GSTDTAP

浏览/检索结果: 共10条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Transparent ferroelectric crystals with ultrahigh piezoelectricity 期刊论文
NATURE, 2020, 577 (7790) : 350-+
作者:  Qiu, Chaorui;  Wang, Bo;  Zhang, Nan;  Zhang, Shujun;  Liu, Jinfeng;  Walker, David;  Wang, Yu;  Tian, Hao;  Shrout, Thomas R.;  Xu, Zhuo;  Chen, Long-Qing;  Li, Fei
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Transparent piezoelectrics are highly desirable for numerous hybrid ultrasound-optical devices ranging from photoacoustic imaging transducers to transparent actuators for haptic applications(1-7). However, it is challenging to achieve high piezoelectricity and perfect transparency simultaneously because most high-performance piezoelectrics are ferroelectrics that contain high-density light-scattering domain walls. Here, through a combination of phase-field simulations and experiments, we demonstrate a relatively simple method of using an alternating-current electric field to engineer the domain structures of originally opaque rhombohedral Pb(Mg1/3Nb2/3)O-3-PbTiO3 (PMN-PT) crystals to simultaneously generate near-perfect transparency, an ultrahigh piezoelectric coefficient d(33) (greater than 2,100 picocoulombs per newton), an excellent electromechanical coupling factor k(33) (about 94 per cent) and a large electro-optical coefficient gamma(33) (approximately 220 picometres per volt), which is far beyond the performance of the commonly used transparent ferroelectric crystal LiNbO3. We find that increasing the domain size leads to a higher d(33) value for the [001]-oriented rhombohedral PMN-PT crystals, challenging the conventional wisdom that decreasing the domain size always results in higher piezoelectricity(8-10). This work presents a paradigm for achieving high transparency and piezoelectricity by ferroelectric domain engineering, and we expect the transparent ferroelectric crystals reported here to provide a route to a wide range of hybrid device applications, such as medical imaging, self-energy-harvesting touch screens and invisible robotic devices.


  
Field-resolved infrared spectroscopy of biological systems 期刊论文
NATURE, 2020, 577 (7788) : 52-+
作者:  Pupeza, Ioachim;  Huber, Marinus;  Trubetskov, Michael;  Schweinberger, Wolfgang;  Hussain, Syed A.;  Hofer, Christina;  Fritsch, Kilian;  Poetzlberger, Markus;  Vamos, Lenard;  Fill, Ernst;  Amotchkina, Tatiana;  Kepesidis, Kosmas V.;  Apolonski, Alexander;  Karpowicz, Nicholas;  Pervak, Vladimir;  Pronin, Oleg;  Fleischmann, Frank;  Azzeer, Abdallah;  Zigman, Mihaela;  Krausz, Ferenc
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

The proper functioning of living systems and physiological phenotypes depends on molecular composition. Yet simultaneous quantitative detection of a wide variety of molecules remains a challenge(1-8). Here we show how broadband optical coherence opens up opportunities for fingerprinting complex molecular ensembles in their natural environment. Vibrationally excited molecules emit a coherent electric field following few-cycle infrared laser excitation(9-12), and this field is specific to the sample'  s molecular composition. Employing electro-optic sampling(10,12-15), we directly measure this global molecular fingerprint down to field strengths 10(7) times weaker than that of the excitation. This enables transillumination of intact living systems with thicknesses of the order of 0.1 millimetres, permitting broadband infrared spectroscopic probing of human cells and plant leaves. In a proof-of-concept analysis of human blood serum, temporal isolation of the infrared electric-field fingerprint from its excitation along with its sampling with attosecond timing precision results in detection sensitivity of submicrograms per millilitre of blood serum and a detectable dynamic range of molecular concentration exceeding 10(5). This technique promises improved molecular sensitivity and molecular coverage for probing complex, real-world biological and medical settings.


  
Electromechanical coupling in the hyperpolarization-activated K+ channel KAT1 期刊论文
NATURE, 2020, 583 (7814) : 145-+
作者:  Jin, Zhenming;  Du, Xiaoyu;  Xu, Yechun;  Deng, Yongqiang;  Liu, Meiqin;  Zhao, Yao;  Zhang, Bing;  Li, Xiaofeng;  Zhang, Leike;  Peng, Chao;  Duan, Yinkai;  Yu, Jing;  Wang, Lin;  Yang, Kailin;  Liu, Fengjiang;  Jiang, Rendi;  Yang, Xinglou;  You, Tian;  Liu, Xiaoce
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

Voltage-gated potassium (K-v) channels coordinate electrical signalling and control cell volume by gating in response to membrane depolarization or hyperpolarization. However, although voltage-sensing domains transduce transmembrane electric field changes by a common mechanism involving the outward or inward translocation of gating charges(1-3), the general determinants of channel gating polarity remain poorly understood(4). Here we suggest a molecular mechanism for electromechanical coupling and gating polarity in non-domain-swapped K-v channels on the basis of the cryo-electron microscopy structure of KAT1, the hyperpolarization-activated K-v channel from Arabidopsis thaliana. KAT1 displays a depolarized voltage sensor, which interacts with a closed pore domain directly via two interfaces and indirectly via an intercalated phospholipid. Functional evaluation of KAT1 structure-guided mutants at the sensor-pore interfaces suggests a mechanism in which direct interaction between the sensor and the C-linker hairpin in the adjacent pore subunit is the primary determinant of gating polarity. We suggest that an inward motion of the S4 sensor helix of approximately 5-7 angstrom can underlie a direct-coupling mechanism, driving a conformational reorientation of the C-linker and ultimately opening the activation gate formed by the S6 intracellular bundle. This direct-coupling mechanism contrasts with allosteric mechanisms proposed for hyperpolarization-activated cyclic nucleotide-gated channels(5), and may represent an unexpected link between depolarization- and hyperpolarization-activated channels.


The cryo-electron microscopy structure of the hyperpolarization-activated K+ channel KAT1 points to a direct-coupling mechanism between S4 movement and the reorientation of the C-linker.


  
Non-volatile electric control of spin-charge conversion in a SrTiO3 Rashba system 期刊论文
NATURE, 2020, 580 (7804) : 483-+
作者:  Collombet, Samuel;  Ranisavljevic, Noemie;  Nagano, Takashi;  Varnai, Csilla;  Shisode, Tarak;  Leung, Wing;  Piolot, Tristan;  Galupa, Rafael;  Borensztein, Maud;  Servant, Nicolas;  Fraser, Peter;  Ancelin, Katia;  Heard, Edith
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

The polarization direction of a ferroelectric-like state can be used to control the conversion of spin currents into charge currents at the surface of strontium titanate, a non-magnetic oxide.


After 50 years of development, the technology of today'  s electronics is approaching its physical limits, with feature sizes smaller than 10 nanometres. It is also becoming clear that the ever-increasing power consumption of information and communication systems(1) needs to be contained. These two factors require the introduction of non-traditional materials and state variables. As recently highlighted(2), the remanence associated with collective switching in ferroic systems is an appealing way to reduce power consumption. A promising approach is spintronics, which relies on ferromagnets to provide non-volatility and to generate and detect spin currents(3). However, magnetization reversal by spin transfer torques(4) is a power-consuming process. This is driving research on multiferroics to achieve low-power electric-field control of magnetization(5), but practical materials are scarce and magnetoelectric switching remains difficult to control. Here we demonstrate an alternative strategy to achieve low-power spin detection, in a non-magnetic system. We harness the electric-field-induced ferroelectric-like state of strontium titanate (SrTiO3)(6-9) to manipulate the spin-orbit properties(10) of a two-dimensional electron gas(11), and efficiently convert spin currents into positive or negative charge currents, depending on the polarization direction. This non-volatile effect opens the way to the electric-field control of spin currents and to ultralow-power spintronics, in which non-volatility would be provided by ferroelectricity rather than by ferromagnetism.


  
Spin-cooling of the motion of a trapped diamond 期刊论文
NATURE, 2020
作者:  Auer, Thomas O.;  Khallaf, Mohammed A.;  Silbering, Ana F.;  Zappia, Giovanna;  Ellis, Kaitlyn;  Alvarez-Ocana, Raquel;  Arguello, J. Roman;  Hansson, Bill S.;  Jefferis, Gregory S. X. E.;  Caron, Sophie J. C.;  Knaden, Markus;  Benton, Richard
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Coupling the spins of many nitrogen-vacancy centres in a trapped diamond to its orientation produces a spin-dependent torque and spin-cooling of the motion of the diamond.


Observing and controlling macroscopic quantum systems has long been a driving force in quantum physics research. In particular, strong coupling between individual quantum systems and mechanical oscillators is being actively studied(1-3). Whereas both read-out of mechanical motion using coherent control of spin systems(4-9) and single-spin read-out using pristine oscillators have been demonstrated(10,11), temperature control of the motion of a macroscopic object using long-lived electronic spins has not been reported. Here we observe a spin-dependent torque and spin-cooling of the motion of a trapped microdiamond. Using a combination of microwave and laser excitation enables the spins of nitrogen-vacancy centres to act on the diamond orientation and to cool the diamond libration via a dynamical back-action. Furthermore, by driving the system in the nonlinear regime, we demonstrate bistability and self-sustained coherent oscillations stimulated by spin-mechanical coupling, which offers the prospect of spin-driven generation of non-classical states of motion. Such a levitating diamond-held in position by electric field gradients under vacuum-can operate as a '  compass'  with controlled dissipation and has potential use in high-precision torque sensing(12-14), emulation of the spin-boson problem(15) and probing of quantum phase transitions(16). In the single-spin limit(17) and using ultrapure nanoscale diamonds, it could allow quantum non-demolition read-out of the spin of nitrogen-vacancy centres at ambient conditions, deterministic entanglement between distant individual spins(18) and matter-wave interferometry(16,19,20).


  
Strongly correlated electrons and hybrid excitons in a moire heterostructure 期刊论文
NATURE, 2020, 580 (7804) : 472-+
作者:  Banerjee, Antara;  Fyfe, John C.;  Polvani, Lorenzo M.;  Waugh, Darryn;  Chang, Kai-Lan
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

Two-dimensional materials and their heterostructures constitute a promising platform to study correlated electronic states, as well as the many-body physics of excitons. Transport measurements on twisted graphene bilayers have revealed a plethora of intertwined electronic phases, including Mott insulators, strange metals and superconductors(1-5). However, signatures of such strong electronic correlations in optical spectroscopy have hitherto remained unexplored. Here we present experiments showing how excitons that are dynamically screened by itinerant electrons to form exciton-polarons(6,7) can be used as a spectroscopic tool to investigate interaction-induced incompressible states of electrons. We study a molybdenum diselenide/hexagonal boron nitride/molybdenum diselenide heterostructure that exhibits a long-period moire superlattice, as evidenced by coherent hole-tunnelling-mediated avoided crossings of an intralayer exciton with three interlayer exciton resonances separated by about five millielectronvolts. For electron densities corresponding to half-filling of the lowest moire subband, we observe strong layer pseudospin paramagnetism, demonstrated by an abrupt transfer of all the (roughly 1,500) electrons from one molybdenum diselenide layer to the other on application of a small perpendicular electric field. Remarkably, the electronic state at half-filling of each molybdenum diselenide layer is resilient towards charge redistribution by the applied electric field, demonstrating an incompressible Mott-like state of electrons. Our experiments demonstrate that optical spectroscopy provides a powerful tool for investigating strongly correlated electron physics in the bulk and paves the way for investigating Bose-Fermi mixtures of degenerate electrons and dipolar excitons.


Optical spectroscopy is used to probe correlated electronic states in a moire heterostructure, showing many-body effects such as strong layer paramagnetism and an incompressible Mott-like state of electrons.


  
Current-driven magnetic domain-wall logic 期刊论文
NATURE, 2020, 579 (7798) : 214-+
作者:  Culp, Elizabeth J.;  Waglechner, Nicholas;  Wang, Wenliang;  Fiebig-Comyn, Aline A.;  Hsu, Yen-Pang;  Koteva, Kalinka;  Sychantha, David;  Coombes, Brian K.;  Van Nieuwenhze, Michael S.;  Brun, Yves, V;  Wright, Gerard D.
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Spin-based logic architectures provide nonvolatile data retention, near-zero leakage, and scalability, extending the technology roadmap beyond complementary metal-oxide-semiconductor logic(1-13). Architectures based on magnetic domain walls take advantage of the fast motion, high density, non-volatility and flexible design of domain walls to process and store information(1,3,14-16). Such schemes, however, rely on domain-wall manipulation and clocking using an external magnetic field, which limits their implementation in dense, large-scale chips. Here we demonstrate a method for performing all-electric logic operations and cascading using domain-wall racetracks. We exploit the chiral coupling between neighbouring magnetic domains induced by the interfacial Dzyaloshinskii-Moriya interaction(17-20), which promotes non-collinear spin alignment, to realize a domain-wall inverter, the essential basic building block in all implementations of Boolean logic. We then fabricate reconfigurable NAND and NOR logic gates, and perform operations with current-induced domain-wall motion. Finally, we cascade several NAND gates to build XOR and full adder gates, demonstrating electrical control of magnetic data and device interconnection in logic circuits. Our work provides a viable platform for scalable all-electric magnetic logic, paving the way for memory-in-logic applications.


  
Coherent electrical control of a single high-spin nucleus in silicon 期刊论文
NATURE, 2020, 579 (7798) : 205-+
作者:  Dedoussi, Irene C.;  Eastham, Sebastian D.;  Monier, Erwan;  Barrett, Steven R. H.
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, for example, in chemistry, medicine, materials science and mining. Nuclear spins also featured in early proposals for solid-state quantum computers(1) and demonstrations of quantum search(2) and factoring(3) algorithms. Scaling up such concepts requires controlling individual nuclei, which can be detected when coupled to an electron(4-6). However, the need to address the nuclei via oscillating magnetic fields complicates their integration in multi-spin nanoscale devices, because the field cannot be localized or screened. Control via electric fields would resolve this problem, but previous methods(7-9) relied on transducing electric signals into magnetic fields via the electron-nuclear hyperfine interaction, which severely affects nuclear coherence. Here we demonstrate the coherent quantum control of a single Sb-123 (spin-7/2) nucleus using localized electric fields produced within a silicon nanoelectronic device. The method exploits an idea proposed in 1961(10) but not previously realized experimentally with a single nucleus. Our results are quantitatively supported by a microscopic theoretical model that reveals how the purely electrical modulation of the nuclear electric quadrupole interaction results in coherent nuclear spin transitions that are uniquely addressable owing to lattice strain. The spin dephasing time, 0.1 seconds, is orders of magnitude longer than those obtained by methods that require a coupled electron spin to achieve electrical driving. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors and hybrid spin-mechanical quantum systems using all-electrical controls. Integrating electrically controllable nuclei with quantum dots(11,12) could pave the way to scalable, nuclear- and electron-spin-based quantum computers in silicon that operate without the need for oscillating magnetic fields.


  
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath 期刊论文
NATURE, 2018, 557 (7704) : 202-+
作者:  Phan, T. D.;  Eastwood, J. P.;  Shay, M. A.;  Drake, J. F.;  Sonnerup, B. U. O.;  Fujimoto, M.;  Cassak, P. A.;  Oieroset, M.;  Burch, J. L.;  Torbert, R. B.;  Rager, A. C.;  Dorelli, J. C.;  Gershman, D. J.;  Pollock, C.;  Pyakurel, P. S.;  Haggerty, C. C.;  Khotyaintsev, Y.;  Lavraud, B.;  Saito, Y.;  Oka, M.;  Ergun, R. E.;  Retino, A.;  Le Contel, O.;  Argall, M. R.;  Giles, B. L.;  Moore, T. E.;  Wilder, F. D.;  Strangeway, R. J.;  Russell, C. T.;  Lindqvist, P. A.;  Magnes, W.
收藏  |  浏览/下载:11/0  |  提交时间:2019/11/27
Robust wireless power transfer using a nonlinear parity-time-symmetric circuit 期刊论文
NATURE, 2017, 546 (7658) : 387-+
作者:  Assawaworrarit, Sid;  Yu, Xiaofang;  Fan, Shanhui
收藏  |  浏览/下载:7/0  |  提交时间:2019/04/09