GSTDTAP

浏览/检索结果: 共5条,第1-5条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Hummingbird-sized dinosaur from the Cretaceous period of Myanmar 期刊论文
NATURE, 2020, 579 (7798) : 245-+
作者:  McBrien, Julia Bergild;  Mavigner, Maud;  Franchitti, Lavinia;  Smith, S. Abigail;  White, Erick;  Tharp, Gregory K.;  Walum, Hasse;  Busman-Sahay, Kathleen;  Aguilera-Sandoval, Christian R.;  Thayer, William O.;  Spagnuolo, Rae Ann;  Kovarova, Martina;  Wahl, Angela;  Cervasi, Barbara;  Margolis, David M.
收藏  |  浏览/下载:5/0  |  提交时间:2020/05/13

Skeletal inclusions in approximately 99-million-year-old amber from northern Myanmar provide unprecedented insights into the soft tissue and skeletal anatomy of minute fauna, which are not typically preserved in other depositional environments(1-3). Among a diversity of vertebrates, seven specimens that preserve the skeletal remains of enantiornithine birds have previously been described(1,4-8), all of which (including at least one seemingly mature specimen) are smaller than specimens recovered from lithic materials. Here we describe an exceptionally well-preserved and diminutive bird-like skull that documents a new species, which we name Oculudentavis khaungraae gen. et sp. nov. The find appears to represent the smallest known dinosaur of the Mesozoic era, rivalling the bee hummingbird (Mellisuga helenae)-the smallest living bird-in size. The O. khaungraae specimen preserves features that hint at miniaturization constraints, including a unique pattern of cranial fusion and an autapomorphic ocular morphology(9) that resembles the eyes of lizards. The conically arranged scleral ossicles define a small pupil, indicative of diurnal activity. Miniaturization most commonly arises in isolated environments, and the diminutive size of Oculudentavis is therefore consistent with previous suggestions that this amber formed on an island within the Trans-Tethyan arc(10). The size and morphology of this species suggest a previously unknown bauplan, and a previously undetected ecology. This discovery highlights the potential of amber deposits to reveal the lowest limits of vertebrate body size.


  
Olfactory receptor and circuit evolution promote host specialization 期刊论文
NATURE, 2020
作者:  Chen, Tse-An;  Chuu, Chih-Piao;  Tseng, Chien-Chih;  Wen, Chao-Kai;  Wong, H. -S. Philip;  Pan, Shuangyuan;  Li, Rongtan;  Chao, Tzu-Ang;  Chueh, Wei-Chen;  Zhang, Yanfeng;  Fu, Qiang;  Yakobson, Boris I.;  Chang, Wen-Hao;  Li, Lain-Jong
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

The evolution of animal behaviour is poorly understood(1,2). Despite numerous correlations between interspecific divergence in behaviour and nervous system structure and function, demonstrations of the genetic basis of these behavioural differences remain rare(3-5). Here we develop a neurogenetic model, Drosophila sechellia, a species that displays marked differences in behaviour compared to its close cousin Drosophila melanogaster(6,7), which are linked to its extreme specialization on noni fruit (Morinda citrifolia)(8-16). Using calcium imaging, we identify olfactory pathways in D. sechellia that detect volatiles emitted by the noni host. Our mutational analysis indicates roles for different olfactory receptors in long- and short-range attraction to noni, and our cross-species allele-transfer experiments demonstrate that the tuning of one of these receptors is important for species-specific host-seeking. We identify the molecular determinants of this functional change, and characterize their evolutionary origin and behavioural importance. We perform circuit tracing in the D. sechellia brain, and find that receptor adaptations are accompanied by increased sensory pooling onto interneurons as well as species-specific central projection patterns. This work reveals an accumulation of molecular, physiological and anatomical traits that are linked to behavioural divergence between species, and defines a model for investigating speciation and the evolution of the nervous system.


A neurogenetic model, Drosophila sechellia-a relative of Drosophila melanogaster that has developed an extreme specialization for a single host plant-sheds light on the evolution of interspecific differences in behaviour.


  
Biodiversity theory backed by island bird data 期刊论文
NATURE, 2020, 579 (7797) : 36-37
作者:  AlQuraishi, Mohammed
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Analysis of a unique global data set reveals how the species diversity of birds is affected by the properties of archipelagos and offers a way to test an influential theory. Has this improved our understanding of island biodiversity patterns?


  
Bacterial coexistence driven by motility and spatial competition 期刊论文
NATURE, 2020, 578 (7796) : 588-+
作者:  Micke, P.;  Leopold, T.;  King, S. A.;  Benkler, E.;  Spiess, L. J.;  Schmoeger, L.;  Schwarz, M.;  Crespo Lopez-Urrutia, J. R.;  Schmidt, P. O.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Elucidating elementary mechanisms that underlie bacterial diversity is central to ecology(1,2) and microbiome research(3). Bacteria are known to coexist by metabolic specialization(4), cooperation(5) and cyclic warfare(6-8). Many species are also motile(9), which is studied in terms of mechanism(10,11), benefit(12,13), strategy(14,15), evolution(16,17) and ecology(18,19). Indeed, bacteria often compete for nutrient patches that become available periodically or by random disturbances(2,20,21). However, the role of bacterial motility in coexistence remains unexplored experimentally. Here we show that-for mixed bacterial populations that colonize nutrient patches-either population outcompetes the other when low in relative abundance. This inversion of the competitive hierarchy is caused by active segregation and spatial exclusion within the patch: a small fast-moving population can outcompete a large fast-growing population by impeding its migration into the patch, while a small fast-growing population can outcompete a large fast-moving population by expelling it from the initial contact area. The resulting spatial segregation is lost for weak growth-migration trade-offs and a lack of virgin space, but is robust to population ratio, density and chemotactic ability, and is observed in both laboratory and wild strains. These findings show that motility differences and their trade-offs with growth are sufficient to promote diversity, and suggest previously undescribed roles for motility in niche formation and collective expulsion-containment strategies beyond individual search and survival.


In mixed bacterial populations that colonize nutrient patches, a growth-migration trade-off can lead to spatial exclusion that provides an advantage to populations that become rare, thereby stabilizing the community.


  
A simple dynamic model explains the diversity of island birds worldwide 期刊论文
NATURE, 2020
作者:  Li, Junxue;  Wilson, C. Blake;  Cheng, Ran;  Lohmann, Mark;  Kavand, Marzieh;  Yuan, Wei;  Aldosary, Mohammed;  Agladze, Nikolay;  Wei, Peng;  Sherwin, Mark S.;  Shi, Jing
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

Colonization, speciation and extinction are dynamic processes that influence global patterns of species richness(1-6). Island biogeography theory predicts that the contribution of these processes to the accumulation of species diversity depends on the area and isolation of the island(7,8). Notably, there has been no robust global test of this prediction for islands where speciation cannot be ignored(9), because neither the appropriate data nor the analytical tools have been available. Here we address both deficiencies to reveal, for island birds, the empirical shape of the general relationships that determine how colonization, extinction and speciation rates co-vary with the area and isolation of islands. We compiled a global molecular phylogenetic dataset of birds on islands, based on the terrestrial avifaunas of 41 oceanic archipelagos worldwide (including 596 avian taxa), and applied a new analysis method to estimate the sensitivity of island-specific rates of colonization, speciation and extinction to island features (area and isolation). Our model predicts-with high explanatory power-several global relationships. We found a decline in colonization with isolation, a decline in extinction with area and an increase in speciation with area and isolation. Combining the theoretical foundations of island biogeography(7,8) with the temporal information contained in molecular phylogenies(10) proves a powerful approach to reveal the fundamental relationships that govern variation in biodiversity across the planet.


Using a global molecular phylogenetic dataset of birds on islands, the sensitivity of island-specific rates of colonization, speciation and extinction to island features (area and isolation) is estimated.