GSTDTAP

浏览/检索结果: 共32条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Molecular architecture of thyroglobulin revealed 期刊论文
NATURE, 2020, 578 (7796) : 520-521
作者:  Botvinik-Nezer, Rotem;  Holzmeister, Felix;  Camerer, Colin F.;  Dreber, Anna;  Huber, Juergen;  Johannesson, Magnus;  Kirchler, Michael;  Iwanir, Roni;  Mumford, Jeanette A.;  Adcock, R. Alison;  Avesani, Paolo;  Baczkowski, Blazej M.;  Bajracharya, Aahana
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

The structure of thyroglobulin, the enormous protein that acts as a precursor for thyroid hormones, has been determined, and its hormone-forming tyrosine amino-acid residues have been identified.


Fresh insight into the biosynthesis of thyroid hormones.


  
A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1 期刊论文
NATURE, 2020, 577 (7788) : 109-+
作者:  Tao, Panfeng;  Sun, Jinqiao;  Wu, Zheming;  Wang, Shihao;  Wang, Jun;  Li, Wanjin;  Pan, Heling;  Bai, Renkui;  Zhang, Jiahui;  Wang, Ying;  Lee, Pui Y.;  Ying, Wenjing;  Zhou, Qinhua;  Hou, Jia;  Wang, Wenjie;  Sun, Bijun;  Yang, Mi;  Liu, Danru;  Fang, Ran;  Han, Huan;  Yang, Zhaohui;  Huang, Xin;  Li, Haibo;  Deuitch, Natalie;  Zhang, Yuan;  Dissanayake, Dilan;  Haude, Katrina;  McWalter, Kirsty;  Roadhouse, Chelsea;  MacKenzie, Jennifer J.;  Laxer, Ronald M.;  Aksentijevich, Ivona;  Yu, Xiaomin;  Wang, Xiaochuan;  Yuan, Junying;  Zhou, Qing
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

Activation of RIPK1 controls TNF-mediated apoptosis, necroptosis and inflammatory pathways(1). Cleavage of human and mouse RIPK1 after residues D324 and D325, respectively, by caspase-8 separates the RIPK1 kinase domain from the intermediate and death domains. The D325A mutation in mouse RIPK1 leads to embryonic lethality during mouse development(2,3). However, the functional importance of blocking caspase-8-mediated cleavage of RIPK1 on RIPK1 activation in humans is unknown. Here we identify two families with variants in RIPK1 (D324V and D324H) that lead to distinct symptoms of recurrent fevers and lymphadenopathy in an autosomaldominant manner. Impaired cleavage of RIPK1 D324 variants by caspase-8 sensitized patients'  peripheral blood mononuclear cells to RIPK1 activation, apoptosis and necroptosis induced by TNF. The patients showed strong RIPK1-dependent activation of inflammatory signalling pathways and overproduction of inflammatory cytokines and chemokines compared with unaffected controls. Furthermore, we show that expression of the RIPK1 mutants D325V or D325H in mouse embryonic fibroblasts confers not only increased sensitivity to RIPK1 activation-mediated apoptosis and necroptosis, but also induction of pro-inflammatory cytokines such as IL-6 and TNF. By contrast, patient-derived fibroblasts showed reduced expression of RIPK1 and downregulated production of reactive oxygen species, resulting in resistance to necroptosis and ferroptosis. Together, these data suggest that human non-cleavable RIPK1 variants promote activation of RIPK1, and lead to an autoinflammatory disease characterized by hypersensitivity to apoptosis and necroptosis and increased inflammatory response in peripheral blood mononuclear cells, as well as a compensatory mechanism to protect against several pro-death stimuli in fibroblasts.


  
Molecular basis of beta-arrestin coupling to formoterol-bound beta(1)-adrenoceptor 期刊论文
NATURE, 2020
作者:  Pulliainen, Jouni;  Luojus, Kari;  Derksen, Chris;  Mudryk, Lawrence;  Lemmetyinen, Juha;  Salminen, Miia;  Ikonen, Jaakko;  Takala, Matias;  Cohen, Juval;  Smolander, Tuomo;  Norberg, Johannes
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

The beta(1)-adrenoceptor (beta(1)AR) is a G-protein-coupled receptor (GPCR) that couples(1)to the heterotrimeric G protein G(s). G-protein-mediated signalling is terminated by phosphorylation of the C terminus of the receptor by GPCR kinases (GRKs) and by coupling of beta-arrestin 1 (beta arr1, also known as arrestin 2), which displaces G(s)and induces signalling through the MAP kinase pathway(2). The ability of synthetic agonists to induce signalling preferentially through either G proteins or arrestins-known as biased agonism(3)-is important in drug development, because the therapeutic effect may arise from only one signalling cascade, whereas the other pathway may mediate undesirable side effects(4). To understand the molecular basis for arrestin coupling, here we determined the cryo-electron microscopy structure of the beta(1)AR-beta arr1 complex in lipid nanodiscs bound to the biased agonist formoterol(5), and the crystal structure of formoterol-bound beta(1)AR coupled to the G-protein-mimetic nanobody(6)Nb80. beta arr1 couples to beta(1)AR in a manner distinct to that(7)of G(s)coupling to beta(2)AR-the finger loop of beta arr1 occupies a narrower cleft on the intracellular surface, and is closer to transmembrane helix H7 of the receptor when compared with the C-terminal alpha 5 helix of G(s). The conformation of the finger loop in beta arr1 is different from that adopted by the finger loop of visual arrestin when it couples to rhodopsin(8). beta(1)AR coupled to beta arr1 shows considerable differences in structure compared with beta(1)AR coupled to Nb80, including an inward movement of extracellular loop 3 and the cytoplasmic ends of H5 and H6. We observe weakened interactions between formoterol and two serine residues in H5 at the orthosteric binding site of beta(1)AR, and find that formoterol has a lower affinity for the beta(1)AR-beta arr1 complex than for the beta(1)AR-G(s)complex. The structural differences between these complexes of beta(1)AR provide a foundation for the design of small molecules that could bias signalling in the beta-adrenoceptors.


A cryo-electron microscopy structure of the beta 1-adrenoceptor coupled to beta-arrestin 1 and activated by the biased agonist formoterol, as well as the crystal structure of a related formoterol-bound adrenoreceptor, provide insights into biased signalling in these systems.


  
Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping 期刊论文
NATURE, 2020, 583 (7817) : 638-+
作者:  Lin, Yiheng;  Leibrandt, David R.;  Leibfriedz, Dietrich;  Chou, Chin-wen
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

A method termed ac(4)C-seq is introduced for the transcriptome-wide mapping of the RNA modificationN(4)-acetylcytidine, revealing widespread temperature-dependent acetylation that facilitates thermoadaptation in hyperthermophilic archaea.


N-4-acetylcytidine (ac(4)C) is an ancient and highly conserved RNA modification that is present on tRNA and rRNA and has recently been investigated in eukaryotic mRNA(1-3). However, the distribution, dynamics and functions of cytidine acetylation have yet to be fully elucidated. Here we report ac(4)C-seq, a chemical genomic method for the transcriptome-wide quantitative mapping of ac(4)C at single-nucleotide resolution. In human and yeast mRNAs, ac(4)C sites are not detected but can be induced-at a conserved sequence motif-via the ectopic overexpression of eukaryotic acetyltransferase complexes. By contrast, cross-evolutionary profiling revealed unprecedented levels of ac(4)C across hundreds of residues in rRNA, tRNA, non-coding RNA and mRNA from hyperthermophilic archaea. (AcC)-C-4 is markedly induced in response to increases in temperature, and acetyltransferase-deficient archaeal strains exhibit temperature-dependent growth defects. Visualization of wild-type and acetyltransferase-deficient archaeal ribosomes by cryo-electron microscopy provided structural insights into the temperature-dependent distribution of ac(4)C and its potential thermoadaptive role. Our studies quantitatively define the ac(4)C landscape, providing a technical and conceptual foundation for elucidating the role of this modification in biology and disease(4-6).


  
Structure and mechanism of human diacylglycerol O-acyltransferase 1 期刊论文
NATURE, 2020, 581 (7808) : 329-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

The structure of human diacylglycerol O-acyltransferase 1, a membrane protein that synthesizes triacylglycerides, is solved with cryo-electron microscopy, providing insight into its function and mechanism of enzymatic activity.


Diacylglycerol O-acyltransferase 1 (DGAT1) synthesizes triacylglycerides and is required for dietary fat absorption and fat storage in humans(1). DGAT1 belongs to the membrane-bound O-acyltransferase (MBOAT) superfamily, members of which are found in all kingdoms of life and are involved in the acylation of lipids and proteins(2,3). How human DGAT1 and other mammalian members of the MBOAT family recognize their substrates and catalyse their reactions is unknown. The absence of three-dimensional structures also hampers rational targeting of DGAT1 for therapeutic purposes. Here we present the cryo-electron microscopy structure of human DGAT1 in complex with an oleoyl-CoA substrate. Each DGAT1 protomer has nine transmembrane helices, eight of which form a conserved structural fold that we name the MBOAT fold. The MBOAT fold in DGAT1 forms a hollow chamber in the membrane that encloses highly conserved catalytic residues. The chamber has separate entrances for each of the two substrates, fatty acyl-CoA and diacylglycerol. DGAT1 can exist as either a homodimer or a homotetramer and the two forms have similar enzymatic activity. The N terminus of DGAT1 interacts with the neighbouring protomer and these interactions are required for enzymatic activity.


  
Accurate compound-specific C-14 dating of archaeological pottery vessels 期刊论文
NATURE, 2020, 580 (7804) : 506-+
作者:  Yin, Yafei;  Lu, J. Yuyang;  Zhang, Xuechun;  Shao, Wen;  Xu, Yanhui;  Li, Pan;  Hong, Yantao;  Cui, Li;  Shan, Ge;  Tian, Bin;  Zhang, Qiangfeng Cliff;  Shen, Xiaohua
收藏  |  浏览/下载:20/0  |  提交时间:2020/05/13

Pottery is one of the most commonly recovered artefacts from archaeological sites. Despite more than a century of relative dating based on typology and seriation(1), accurate dating of pottery using the radiocarbon dating method has proven extremely challenging owing to the limited survival of organic temper and unreliability of visible residues(2-4). Here we report a method to directly date archaeological pottery based on accelerator mass spectrometry analysis of C-14 in absorbed food residues using palmitic (C-16:0) and stearic (C-18:0) fatty acids purified by preparative gas chromatography(5-8). We present accurate compound-specific radiocarbon determinations of lipids extracted from pottery vessels, which were rigorously evaluated by comparison with dendrochronological dates(9,10) and inclusion in site and regional chronologies that contained previously determined radiocarbon dates on other materials(11-15). Notably, the compound-specific dates from each of the C-16:0 and C-18:0 fatty acids in pottery vessels provide an internal quality control of the results(6) and are entirely compatible with dates for other commonly dated materials. Accurate radiocarbon dating of pottery vessels can reveal: (1) the period of use of pottery  (2) the antiquity of organic residues, including when specific foodstuffs were exploited  (3) the chronology of sites in the absence of traditionally datable materials  and (4) direct verification of pottery typochronologies. Here we used the method to date the exploitation of dairy and carcass products in Neolithic vessels from Britain, Anatolia, central and western Europe, and Saharan Africa.


Using lipid residues absorbed in potsherds, the ages of pottery from various archaeological sites are determined and validated using sites for which the dates are well known from other methods.


  
A lower X-gate in TASK channels traps inhibitors within the vestibule 期刊论文
NATURE, 2020
作者:  Chen, Tao;  Nomura, Kinya;  Wang, Xiaolin;  Sohrabi, Reza;  Xu, Jin;  Yao, Lingya;  Paasch, Bradley C.;  Ma, Li;  Kremer, James;  Cheng, Yuti;  Zhang, Li;  Wang, Nian;  Wang, Ertao;  Xin, Xiu-Fang;  He, Sheng Yang
收藏  |  浏览/下载:34/0  |  提交时间:2020/07/03

TWIK-related acid-sensitive potassium (TASK) channels-members of the two pore domain potassium (K-2P) channel family-are found in neurons(1), cardiomyocytes(2-4) and vascular smooth muscle cells(5), where they are involved in the regulation of heart rate(6), pulmonary artery tone(5,7), sleep/wake cycles(8) and responses to volatile anaesthetics(8-11). K-2P channels regulate the resting membrane potential, providing background K+ currents controlled by numerous physiological stimuli(12-15). Unlike other K-2P channels, TASK channels are able to bind inhibitors with high affinity, exceptional selectivity and very slow compound washout rates. As such, these channels are attractive drug targets, and TASK-1 inhibitors are currently in clinical trials for obstructive sleep apnoea and atrial fibrillation(16). In general, potassium channels have an intramembrane vestibule with a selectivity filter situated above and a gate with four parallel helices located below  however, the K-2P channels studied so far all lack a lower gate. Here we present the X-ray crystal structure of TASK-1, and show that it contains a lower gate-which we designate as an '  X-gate'  -created by interaction of the two crossed C-terminal M4 transmembrane helices at the vestibule entrance. This structure is formed by six residues ((VLRFMT248)-V-243) that are essential for responses to volatile anaesthetics(10), neurotransmitters(13) and G-protein-coupled receptors(13). Mutations within the X-gate and the surrounding regions markedly affect both the channel-open probability and the activation of the channel by anaesthetics. Structures of TASK-1 bound to two high-affinity inhibitors show that both compounds bind below the selectivity filter and are trapped in the vestibule by the X-gate, which explains their exceptionally low washout rates. The presence of the X-gate in TASK channels explains many aspects of their physiological and pharmacological behaviour, which will be beneficial for the future development and optimization of TASK modulators for the treatment of heart, lung and sleep disorders.


The X-ray crystal structure of the potassium channel TASK-1 reveals the presence of an X-gate, which traps small-molecule inhibitors in the intramembrane vestibule and explains their low washout rates from the channel.


  
Origin of complexity in haemoglobin evolution 期刊论文
NATURE, 2020
作者:  Cheema, Suraj S.;  Kwon, Daewoong;  Shanker, Nirmaan;  dos Reis, Roberto;  Hsu, Shang-Lin;  Xiao, Jun;  Zhang, Haigang;  Wagner, Ryan;  Datar, Adhiraj;  McCarter, Margaret R.;  Serrao, Claudy R.;  Yadav, Ajay K.;  Karbasian, Golnaz;  Hsu, Cheng-Hsiang;  Tan, Ava J.;  Wang, Li-Chen;  Thakare, Vishal;  Zhang, Xiang;  Mehta, Apurva;  Karapetrova, Evguenia;  Chopdekar, Rajesh, V;  Shafer, Padraic;  Arenholz, Elke;  Hu, Chenming;  Proksch, Roger;  Ramesh, Ramamoorthy;  Ciston, Jim;  Salahuddin, Sayeef
收藏  |  浏览/下载:50/0  |  提交时间:2020/07/03

Most proteins associate into multimeric complexes with specific architectures(1,2), which often have functional properties such as cooperative ligand binding or allosteric regulation(3). No detailed knowledge is available about how any multimer and its functions arose during evolution. Here we use ancestral protein reconstruction and biophysical assays to elucidate the origins of vertebrate haemoglobin, a heterotetramer of paralogous alpha- and beta-subunits that mediates respiratory oxygen transport and exchange by cooperatively binding oxygen with moderate affinity. We show that modern haemoglobin evolved from an ancient monomer and characterize the historical '  missing link'  through which the modern tetramer evolved-a noncooperative homodimer with high oxygen affinity that existed before the gene duplication that generated distinct alpha- and beta-subunits. Reintroducing just two post-duplication historical substitutions into the ancestral protein is sufficient to cause strong tetramerization by creating favourable contacts with more ancient residues on the opposing subunit. These surface substitutions markedly reduce oxygen affinity and even confer cooperativity, because an ancient linkage between the oxygen binding site and the multimerization interface was already an intrinsic feature of the protein'  s structure. Our findings establish that evolution can produce new complex molecular structures and functions via simple genetic mechanisms that recruit existing biophysical features into higher-level architectures.


Experimental analysis of reconstructed ancestral globins reveals that haemoglobin'  s complex tetrameric structure and oxygen-binding functions evolved by simple genetic and biophysical mechanisms.


  
Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor 期刊论文
NATURE, 2020, 581 (7807) : 215-+
作者:  Goudeau, Jerome;  Samaddar, Madhuja;  Bohnert, K. Adam;  Kenyon, Cynthia
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

A new and highly pathogenic coronavirus (severe acute respiratory syndrome coronavirus-2, SARS-CoV-2) caused an outbreak in Wuhan city, Hubei province, China, starting from December 2019 that quickly spread nationwide and to other countries around the world(1-3). Here, to better understand the initial step of infection at an atomic level, we determined the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 bound to the cell receptor ACE2. The overall ACE2-binding mode of the SARS-CoV-2 RBD is nearly identical to that of the SARS-CoV RBD, which also uses ACE2 as the cell receptor(4). Structural analysis identified residues in the SARS-CoV-2 RBD that are essential for ACE2 binding, the majority of which either are highly conserved or share similar side chain properties with those in the SARS-CoV RBD. Such similarity in structure and sequence strongly indicate convergent evolution between the SARS-CoV-2 and SARS-CoV RBDs for improved binding to ACE2, although SARS-CoV-2 does not cluster within SARS and SARS-related coronaviruses(1-3,5). The epitopes of two SARS-CoV antibodies that target the RBD are also analysed for binding to the SARS-CoV-2 RBD, providing insights into the future identification of cross-reactive antibodies.


  
LRP1 is a master regulator of tau uptake and spread 期刊论文
NATURE, 2020, 580 (7803) : 381-+
作者:  Han, Yan;  Reyes, Alexis A.;  Malik, Sara;  He, Yuan
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

The spread of protein aggregates during disease progression is a common theme underlying many neurodegenerative diseases. The microtubule-associated protein tau has a central role in the pathogenesis of several forms of dementia known as tauopathies-including Alzheimer'  s disease, frontotemporal dementia and chronic traumatic encephalopathy(1). Progression of these diseases is characterized by the sequential spread and deposition of protein aggregates in a predictable pattern that correlates with clinical severity(2). This observation and complementary experimental studies(3,4) have suggested that tau can spread in a prion-like manner, by passing to naive cells in which it templates misfolding and aggregation. However, although the propagation of tau has been extensively studied, the underlying cellular mechanisms remain poorly understood. Here we show that the low-density lipoprotein receptor-related protein 1 (LRP1) controls the endocytosis of tau and its subsequent spread. Knockdown of LRP1 significantly reduced tau uptake in H4 neuroglioma cells and in induced pluripotent stem cell-derived neurons. The interaction between tau and LRP1 is mediated by lysine residues in the microtubule-binding repeat region of tau. Furthermore, downregulation of LRP1 in an in vivo mouse model of tau spread was found to effectively reduce the propagation of tau between neurons. Our results identify LRP1 as a key regulator of tau spread in the brain, and therefore a potential target for the treatment of diseases that involve tau spread and aggregation.