GSTDTAP

浏览/检索结果: 共24条,第1-10条 帮助

限定条件            
已选(0)清除 条数/页:   排序方式:
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation 期刊论文
NATURE, 2020, 581 (7807) : 184-+
作者:  Liang, Guanxiang;  Zhao, Chunyu;  Zhang, Huanjia;  Mattei, Lisa;  Sherrill-Mix, Scott;  Bittinger, Kyle;  Kessler, Lyanna R.;  Wu, Gary D.;  Baldassano, Robert N.;  DeRusso, Patricia;  Ford, Eileen;  Elovitz, Michal A.;  Kelly, Matthew S.;  Patel, Mohamed Z.;  Mazhani, Tiny;  Gerber, Jeffrey S.;  Kelly, Andrea;  Zemel, Babette S.;  Bushman, Frederic D.
收藏  |  浏览/下载:17/0  |  提交时间:2020/05/20

A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog(1,2), but how it occurs in cities is often puzzling(3). If the growth rates of urban particles are similar to those found in cleaner environments (1-10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below -15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid-base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms(4,5).


  
Exploring dynamical phase transitions with cold atoms in an optical cavity 期刊论文
NATURE, 2020, 580 (7805) : 602-+
作者:  Halbach, Rebecca;  Miesen, Pascal;  Joosten, Joep;  Taskopru, Ezgi;  Rondeel, Inge;  Pennings, Bas;  Vogels, Chantal B. F.;  Merkling, Sarah H.;  Koenraadt, Constantianus J.;  Lambrechts, Louis;  van Rij, Ronald P.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Interactions between light and an ensemble of strontium atoms in an optical cavity can serve as a testbed for studying dynamical phase transitions, which are currently not well understood.


Interactions between atoms and light in optical cavities provide a means of investigating collective (many-body) quantum physics in controlled environments. Such ensembles of atoms in cavities have been proposed for studying collective quantum spin models, where the atomic internal levels mimic a spin degree of freedom and interact through long-range interactions tunable by changing the cavity parameters(1-4). Non-classical steady-state phases arising from the interplay between atom-light interactions and dissipation of light from the cavity have previously been investigated(5-11). These systems also offer the opportunity to study dynamical phases of matter that are precluded from existence at equilibrium but can be stabilized by driving a system out of equilibrium(12-16), as demonstrated by recent experiments(17-22). These phases can also display universal behaviours akin to standard equilibrium phase transitions(8,23,24). Here, we use an ensemble of about a million strontium-88 atoms in an optical cavity to simulate a collective Lipkin-Meshkov-Glick model(25,26), an iconic model in quantum magnetism, and report the observation of distinct dynamical phases of matter in this system. Our system allows us to probe the dependence of dynamical phase transitions on system size, initial state and other parameters. These observations can be linked to similar dynamical phases in related systems, including the Josephson effect in superfluid helium(27), or coupled atomic(28) and solid-state polariton(29) condensates. The system itself offers potential for generation of metrologically useful entangled states in optical transitions, which could permit quantum enhancement in state-of-the-art atomic clocks(30,31).


  
Seasonal hysteresis of surface urban heat islands 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (13) : 7082-7089
作者:  Manoli, Gabriele;  Fatichi, Simone;  Bou-Zeid, Elie;  Katul, Gabriel G.
收藏  |  浏览/下载:15/0  |  提交时间:2020/05/13
cities  hysteresis  seasonality  surface temperature  urban heat island  
Ionic solids from common colloids 期刊论文
NATURE, 2020, 580 (7804) : 487-+
作者:  Delord, T.;  Huillery, P.;  Nicolas, L.;  Hetet, G.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/03

Oppositely charged colloidal particles are assembled in water through an approach that allows electrostatic interactions to be precisely tuned to generate macroscopic single crystals.


From rock salt to nanoparticle superlattices, complex structure can emerge from simple building blocks that attract each other through Coulombic forces(1-4). On the micrometre scale, however, colloids in water defy the intuitively simple idea of forming crystals from oppositely charged partners, instead forming non-equilibrium structures such as clusters and gels(5-7). Although various systems have been engineered to grow binary crystals(8-11), native surface charge in aqueous conditions has not been used to assemble crystalline materials. Here we form ionic colloidal crystals in water through an approach that we refer to as polymer-attenuated Coulombic self-assembly. The key to crystallization is the use of a neutral polymer to keep particles separated by well defined distances, allowing us to tune the attractive overlap of electrical double layers, directing particles to disperse, crystallize or become permanently fixed on demand. The nucleation and growth of macroscopic single crystals is demonstrated by using the Debye screening length to fine-tune assembly. Using a variety of colloidal particles and commercial polymers, ionic colloidal crystals isostructural to caesium chloride, sodium chloride, aluminium diboride and K4C60 are selected according to particle size ratios. Once fixed by simply diluting out solution salts, crystals are pulled out of the water for further manipulation, demonstrating an accurate translation from solution-phase assembly to dried solid structures. In contrast to other assembly approaches, in which particles must be carefully engineered to encode binding information(12-18), polymer-attenuated Coulombic self-assembly enables conventional colloids to be used as model colloidal ions, primed for crystallization.


  
Simulation of Hubbard model physics in WSe2/WS2 moire superlattices 期刊论文
NATURE, 2020, 579 (7799) : 353-+
作者:  Stein, Reed M.;  Kang, Hye Jin;  McCorvy, John D.;  Glatfelter, Grant C.;  Jones, Anthony J.;  Che, Tao;  Slocum, Samuel;  Huang, Xi-Ping;  Savych, Olena;  Moroz, Yurii S.;  Stauch, Benjamin;  Johansson, Linda C.;  Cherezov, Vadim;  Kenakin, Terry;  Irwin, John J.;  Shoichet, Brian K.;  Roth, Bryan L.;  Dubocovich, Margarita L.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Study of WSe2/WS2 moire superlattices reveals the phase diagram of the triangular-lattice Hubbard model, including a Mott insulating state at half-filling and a possible magnetic quantum phase transition near 0.6 filling.


The Hubbard model, formulated by physicist John Hubbard in the 1960s(1), is a simple theoretical model of interacting quantum particles in a lattice. The model is thought to capture the essential physics of high-temperature superconductors, magnetic insulators and other complex quantum many-body ground states(2,3). Although the Hubbard model provides a greatly simplified representation of most real materials, it is nevertheless difficult to solve accurately except in the one-dimensional case(2,3). Therefore, the physical realization of the Hubbard model in two or three dimensions, which can act as an analogue quantum simulator (that is, it can mimic the model and simulate its phase diagram and dynamics(4,5)), has a vital role in solving the strong-correlation puzzle, namely, revealing the physics of a large number of strongly interacting quantum particles. Here we obtain the phase diagram of the two-dimensional triangular-lattice Hubbard model by studying angle-aligned WSe2/WS2 bilayers, which form moire superlattices(6) because of the difference between the lattice constants of the two materials. We probe the charge and magnetic properties of the system by measuring the dependence of its optical response on an out-of-plane magnetic field and on the gate-tuned carrier density. At half-filling of the first hole moire superlattice band, we observe a Mott insulating state with antiferromagnetic Curie-Weiss behaviour, as expected for a Hubbard model in the strong-interaction regime(2,3,7-9). Above half-filling, our experiment suggests a possible quantum phase transition from an antiferromagnetic to a weak ferromagnetic state at filling factors near 0.6. Our results establish a new solid-state platform based on moire superlattices that can be used to simulate problems in strong-correlation physics that are described by triangular-lattice Hubbard models.


  
Spin-cooling of the motion of a trapped diamond 期刊论文
NATURE, 2020
作者:  Auer, Thomas O.;  Khallaf, Mohammed A.;  Silbering, Ana F.;  Zappia, Giovanna;  Ellis, Kaitlyn;  Alvarez-Ocana, Raquel;  Arguello, J. Roman;  Hansson, Bill S.;  Jefferis, Gregory S. X. E.;  Caron, Sophie J. C.;  Knaden, Markus;  Benton, Richard
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Coupling the spins of many nitrogen-vacancy centres in a trapped diamond to its orientation produces a spin-dependent torque and spin-cooling of the motion of the diamond.


Observing and controlling macroscopic quantum systems has long been a driving force in quantum physics research. In particular, strong coupling between individual quantum systems and mechanical oscillators is being actively studied(1-3). Whereas both read-out of mechanical motion using coherent control of spin systems(4-9) and single-spin read-out using pristine oscillators have been demonstrated(10,11), temperature control of the motion of a macroscopic object using long-lived electronic spins has not been reported. Here we observe a spin-dependent torque and spin-cooling of the motion of a trapped microdiamond. Using a combination of microwave and laser excitation enables the spins of nitrogen-vacancy centres to act on the diamond orientation and to cool the diamond libration via a dynamical back-action. Furthermore, by driving the system in the nonlinear regime, we demonstrate bistability and self-sustained coherent oscillations stimulated by spin-mechanical coupling, which offers the prospect of spin-driven generation of non-classical states of motion. Such a levitating diamond-held in position by electric field gradients under vacuum-can operate as a '  compass'  with controlled dissipation and has potential use in high-precision torque sensing(12-14), emulation of the spin-boson problem(15) and probing of quantum phase transitions(16). In the single-spin limit(17) and using ultrapure nanoscale diamonds, it could allow quantum non-demolition read-out of the spin of nitrogen-vacancy centres at ambient conditions, deterministic entanglement between distant individual spins(18) and matter-wave interferometry(16,19,20).


  
Intraplate volcanism originating from upwelling hydrous mantle transition zone 期刊论文
NATURE, 2020
作者:  Calabrese, Claudia;  Davidson, Natalie R.;  Demircioglu, Deniz;  Fonseca, Nuno A.;  He, Yao;  Kahles, Andre;  Kjong-Van Lehmann;  Liu, Fenglin;  Shiraishi, Yuichi;  Soulette, Cameron M.;  Urban, Lara;  Greger, Liliana;  Li, Siliang;  Liu, Dongbing;  Perry, Marc D.;  Xiang, Qian;  Zhang, Fan;  Zhang, Junjun;  Bailey, Peter;  Erkek, Serap;  Hoadley, Katherine A.;  Hou, Yong;  Huska, Matthew R.;  Kilpinen, Helena;  Korbel, Jan O.;  Marin, Maximillian G.;  Markowski, Julia;  Nandi, Tannistha;  Pan-Hammarstrom, Qiang;  Pedamallu, Chandra Sekhar;  Siebert, Reiner;  Stark, Stefan G.;  Su, Hong;  Tan, Patrick;  Waszak, Sebastian M.;  Yung, Christina;  Zhu, Shida;  Awadalla, Philip;  Creighton, Chad J.;  Meyerson, Matthew;  Ouellette, B. F. Francis;  Wu, Kui;  Yang, Huanming;  Brazma, Alvis;  Brooks, Angela N.;  Goke, Jonathan;  Raetsch, Gunnar;  Schwarz, Roland F.;  Stegle, Oliver;  Zhang, Zemin
收藏  |  浏览/下载:75/0  |  提交时间:2020/05/13

Most magmatism occurring on Earth is conventionally attributed to passive mantle upwelling at mid-ocean ridges, to slab devolatilization at subduction zones, or to mantle plumes. However, the widespread Cenozoic intraplate volcanism in northeast China(1-3) and the young petit-spot volcanoes(4-7) offshore of the Japan Trench cannot readily be associated with any of these mechanisms. In addition, the mantle beneath these types of volcanism is characterized by zones of anomalously low seismic velocity above and below the transition zone(8-12) (a mantle level located at depths between 410 and 660 kilometres). A comprehensive interpretation of these phenomena is lacking. Here we show that most (or possibly all) of the intraplate and petit-spot volcanism and low-velocity zones around the Japanese subduction zone can be explained by the Cenozoic interaction of the subducting Pacific slab with a hydrous mantle transition zone. Numerical modelling indicates that 0.2 to 0.3 weight per cent of water dissolved in mantle minerals that are driven out from the transition zone in response to subduction and retreat of a tectonic plate is sufficient to reproduce the observations. This suggests that a critical amount of water may have accumulated in the transition zone around this subduction zone, as well as in others of the Tethyan tectonic belt(13) that are characterized by intraplate or petit-spot volcanism and low-velocity zones in the underlying mantle.


The widespread intraplate volcanism in northeast China and the unusual '  petit-spot'  volcanoes offshore Japan could have resulted from the interaction of the subducting Pacific slab with a hydrous mantle transition zone.


  
Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide 期刊论文
NATURE, 2020, 578 (7796) : 545-+
作者:  Kum, Hyun S.;  Lee, Hyungwoo;  Kim, Sungkyu;  Lindemann, Shane;  Kong, Wei;  Qiao, Kuan;  Chen, Peng;  Irwin, Julian;  Lee, June Hyuk;  Xie, Saien;  Subramanian, Shruti;  Shim, Jaewoo;  Bae, Sang-Hoon;  Choi, Chanyeol;  Ranno, Luigi;  Seo, Seungju;  Lee, Sangho;  Bauer, Jackson;  Li, Huashan;  Lee, Kyusang;  Robinson, Joshua A.;  Ross, Caroline A.;  Schlom, Darrell G.;  Rzchowski, Mark S.;  Eom, Chang-Beom;  Kim, Jeehwan
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Chirality is ubiquitous in nature, and populations of opposite chiralities are surprisingly asymmetric at fundamental levels(1,2). Examples range from parity violation in the subatomic weak force to homochirality in biomolecules. The ability to achieve chirality-selective synthesis (chiral induction) is of great importance in stereochemistry, molecular biology and pharmacology(2). In condensed matter physics, a crystalline electronic system is geometrically chiral when it lacks mirror planes, space-inversion centres or rotoinversion axes(1). Typically, geometrical chirality is predefined by the chiral lattice structure of a material, which is fixed on formation of the crystal. By contrast, in materials with gyrotropic order(3-6), electrons spontaneously organize themselves to exhibit macroscopic chirality in an originally achiral lattice. Although such order-which has been proposed as the quantum analogue of cholesteric liquid crystals-has attracted considerable interest(3-15), no clear observation or manipulation of gyrotropic order has been achieved so far. Here we report the realization of optical chiral induction and the observation of a gyrotropically ordered phase in the transition-metal dichalcogenide semimetal 1T-TiSe2. We show that shining mid-infrared circularly polarized light on 1T-TiSe2 while cooling it below the critical temperature leads to the preferential formation of one chiral domain. The chirality of this state is confirmed by the measurement of an out-of-plane circular photogalvanic current, the direction of which depends on the optical induction. Although the role of domain walls requires further investigation with local probes, the methodology demonstrated here can be applied to realize and control chiral electronic phases in other quantum materials(4,16).


Optical chiral induction and spontaneous gyrotropic electronic order are realized in the transition-metal chalcogenide 1T-TiSe2 by using illumination with mid-infrared circularly polarized light and simultaneous cooling below the critical temperature.


  
Li metal deposition and stripping in a solid-state battery via Coble creep 期刊论文
NATURE, 2020, 578 (7794) : 251-+
作者:  Helmrich, S.;  Arias, A.;  Lochead, G.;  Wintermantel, T. M.;  Buchhold, M.;  Diehl, S.;  Whitlock, S.
收藏  |  浏览/下载:56/0  |  提交时间:2020/07/03

Solid-state lithium metal batteries require accommodation of electrochemically generated mechanical stress inside the lithium: this stress can be(1,2) up to 1 gigapascal for an overpotential of 135 millivolts. Maintaining the mechanical and electrochemical stability of the solid structure despite physical contact with moving corrosive lithium metal is a demanding requirement. Using in situ transmission electron microscopy, we investigated the deposition and stripping of metallic lithium or sodium held within a large number of parallel hollow tubules made of a mixed ionic-electronic conductor (MIEC). Here we show that these alkali metals-as single crystals-can grow out of and retract inside the tubules via mainly diffusional Coble creep along the MIEC/metal phase boundary. Unlike solid electrolytes, many MIECs are electrochemically stable in contact with lithium (that is, there is a direct tie-line to metallic lithium on the equilibrium phase diagram), so this Coble creep mechanism can effectively relieve stress, maintain electronic and ionic contacts, eliminate solid-electrolyte interphase debris, and allow the reversible deposition/stripping of lithium across a distance of 10 micrometres for 100 cycles. A centimetre-wide full cell-consisting of approximately 10(10) MIEC cylinders/solid electrolyte/LiFePO4-shows a high capacity of about 164 milliampere hours per gram of LiFePO4, and almost no degradation for over 50 cycles, starting with a 1x excess of Li. Modelling shows that the design is insensitive to MIEC material choice with channels about 100 nanometres wide and 10-100 micrometres deep. The behaviour of lithium metal within the MIEC channels suggests that the chemical and mechanical stability issues with the metal-electrolyte interface in solid-state lithium metal batteries can be overcome using this architecture.


By containing lithium metal within oriented tubes of a mixed ionic-electronic conductor, a 3D anode for lithium metal batteries is produced that overcomes chemomechanical stability issues at the electrolyte interface.


  
Gram-scale bottom-up flash graphene synthesis 期刊论文
NATURE, 2020, 577 (7792) : 647-651
作者:  Long, Haizhen;  Zhang, Liwei;  Lv, Mengjie;  Wen, Zengqi;  Zhang, Wenhao;  Chen, Xiulan;  Zhang, Peitao;  Li, Tongqing;  Chang, Luyuan;  Jin, Caiwei;  Wu, Guozhao;  Wang, Xi;  Yang, Fuquan;  Pei, Jianfeng;  Chen, Ping;  Margueron, Raphael;  Deng, Haiteng;  Zhu, Mingzhao;  Li, Guohong
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Most bulk-scale graphene is produced by a top-down approach, exfoliating graphite, which often requires large amounts of solvent with high-energy mixing, shearing, sonication or electrochemical treatment(1-3). Although chemical oxidation of graphite to graphene oxide promotes exfoliation, it requires harsh oxidants and leaves the graphene with a defective perforated structure after the subsequent reduction step(3,4). Bottom-up synthesis of high-quality graphene is often restricted to ultrasmall amounts if performed by chemical vapour deposition or advanced synthetic organic methods, or it provides a defect-ridden structure if carried out in bulk solution(4-6). Here we show that flash Joule heating of inexpensive carbon sources-such as coal, petroleum coke, biochar, carbon black, discarded food, rubber tyres and mixed plastic waste-can afford gram-scale quantities of graphene in less than one second. The product, named flash graphene (FG) after the process used to produce it, shows turbostratic arrangement (that is, little order) between the stacked graphene layers. FG synthesis uses no furnace and no solvents or reactive gases. Yields depend on the carbon content of the source  when using a high-carbon source, such as carbon black, anthracitic coal or calcined coke, yields can range from 80 to 90 per cent with carbon purity greater than 99 per cent. No purification steps are necessary. Raman spectroscopy analysis shows a low-intensity or absent D band for FG, indicating that FG has among the lowest defect concentrations reported so far for graphene, and confirms the turbostratic stacking of FG, which is clearly distinguished from turbostratic graphite. The disordered orientation of FG layers facilitates its rapid exfoliation upon mixing during composite formation. The electric energy cost for FG synthesis is only about 7.2 kilojoules per gram, which could render FG suitable for use in bulk composites of plastic, metals, plywood, concrete and other building materials.


Flash Joule heating of inexpensive carbon sources is used to produce gram-scale quantities of high-quality graphene in under a second, without the need for a furnace, solvents or reactive gases.