GSTDTAP

浏览/检索结果: 共41条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Raising standards to lower diesel emissions 期刊论文
Science, 2021
作者:  Megan Schwarzman;  Samantha Schildroth;  May Bhetraratana;  Álvaro Alvarado;  John Balmes
收藏  |  浏览/下载:15/0  |  提交时间:2021/04/06
Role of iodine oxoacids in atmospheric aerosol nucleation 期刊论文
Science, 2021
作者:  Xu-Cheng He;  Yee Jun Tham;  Lubna Dada;  Mingyi Wang;  Henning Finkenzeller;  Dominik Stolzenburg;  Siddharth Iyer;  Mario Simon;  Andreas Kürten;  Jiali Shen;  Birte Rörup;  Matti Rissanen;  Siegfried Schobesberger;  Rima Baalbaki;  Dongyu S. Wang;  Theodore K. Koenig;  Tuija Jokinen;  Nina Sarnela;  Lisa J. Beck;  João Almeida;  Stavros Amanatidis;  António Amorim;  Farnoush Ataei;  Andrea Baccarini;  Barbara Bertozzi;  Federico Bianchi;  Sophia Brilke;  Lucía Caudillo;  Dexian Chen;  Randall Chiu;  Biwu Chu;  António Dias;  Aijun Ding;  Josef Dommen;  Jonathan Duplissy;  Imad El Haddad;  Loïc Gonzalez Carracedo;  Manuel Granzin;  Armin Hansel;  Martin Heinritzi;  Victoria Hofbauer;  Heikki Junninen;  Juha Kangasluoma;  Deniz Kemppainen;  Changhyuk Kim;  Weimeng Kong;  Jordan E. Krechmer;  Aleksander Kvashin;  Totti Laitinen;  Houssni Lamkaddam;  Chuan Ping Lee;  Katrianne Lehtipalo;  Markus Leiminger;  Zijun Li;  Vladimir Makhmutov;  Hanna E. Manninen;  Guillaume Marie;  Ruby Marten;  Serge Mathot;  Roy L. Mauldin;  Bernhard Mentler;  Ottmar Möhler;  Tatjana Müller;  Wei Nie;  Antti Onnela;  Tuukka Petäjä;  Joschka Pfeifer;  Maxim Philippov;  Ananth Ranjithkumar;  Alfonso Saiz-Lopez;  Imre Salma;  Wiebke Scholz;  Simone Schuchmann;  Benjamin Schulze;  Gerhard Steiner;  Yuri Stozhkov;  Christian Tauber;  António Tomé;  Roseline C. Thakur;  Olli Väisänen;  Miguel Vazquez-Pufleau;  Andrea C. Wagner;  Yonghong Wang;  Stefan K. Weber;  Paul M. Winkler;  Yusheng Wu;  Mao Xiao;  Chao Yan;  Qing Ye;  Arttu Ylisirniö;  Marcel Zauner-Wieczorek;  Qiaozhi Zha;  Putian Zhou;  Richard C. Flagan;  Joachim Curtius;  Urs Baltensperger;  Markku Kulmala;  Veli-Matti Kerminen;  Theo Kurtén;  Neil M. Donahue;  Rainer Volkamer;  Jasper Kirkby;  Douglas R. Worsnop;  Mikko Sipilä
收藏  |  浏览/下载:14/0  |  提交时间:2021/02/17
Enhancing host cell infection by SARS-CoV-2 期刊论文
Science, 2020
作者:  Margaret Kielian
收藏  |  浏览/下载:0/0  |  提交时间:2020/11/20
Listen up 期刊论文
Science, 2020
作者:  Daniel Clery
收藏  |  浏览/下载:13/0  |  提交时间:2020/09/14
How it all ends 期刊论文
Science, 2020
作者:  Paul Halpern
收藏  |  浏览/下载:1/0  |  提交时间:2020/08/18
Microplastic in terrestrial ecosystems 期刊论文
Science, 2020
作者:  Matthias C. Rillig;  Anika Lehmann
收藏  |  浏览/下载:11/0  |  提交时间:2020/06/29
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation 期刊论文
NATURE, 2020, 581 (7807) : 184-+
作者:  Liang, Guanxiang;  Zhao, Chunyu;  Zhang, Huanjia;  Mattei, Lisa;  Sherrill-Mix, Scott;  Bittinger, Kyle;  Kessler, Lyanna R.;  Wu, Gary D.;  Baldassano, Robert N.;  DeRusso, Patricia;  Ford, Eileen;  Elovitz, Michal A.;  Kelly, Matthew S.;  Patel, Mohamed Z.;  Mazhani, Tiny;  Gerber, Jeffrey S.;  Kelly, Andrea;  Zemel, Babette S.;  Bushman, Frederic D.
收藏  |  浏览/下载:17/0  |  提交时间:2020/05/20

A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog(1,2), but how it occurs in cities is often puzzling(3). If the growth rates of urban particles are similar to those found in cleaner environments (1-10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below -15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid-base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms(4,5).


  
Closing the science gap in 3D metal printing 期刊论文
Science, 2020
作者:  Andrew T. Polonsky;  Tresa M. Pollock
收藏  |  浏览/下载:5/0  |  提交时间:2020/05/13
Drones become even more insect-like 期刊论文
Science, 2020
作者:  John Young;  Matthew Garratt
收藏  |  浏览/下载:10/0  |  提交时间:2020/05/13
Ionic solids from common colloids 期刊论文
NATURE, 2020, 580 (7804) : 487-+
作者:  Delord, T.;  Huillery, P.;  Nicolas, L.;  Hetet, G.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/03

Oppositely charged colloidal particles are assembled in water through an approach that allows electrostatic interactions to be precisely tuned to generate macroscopic single crystals.


From rock salt to nanoparticle superlattices, complex structure can emerge from simple building blocks that attract each other through Coulombic forces(1-4). On the micrometre scale, however, colloids in water defy the intuitively simple idea of forming crystals from oppositely charged partners, instead forming non-equilibrium structures such as clusters and gels(5-7). Although various systems have been engineered to grow binary crystals(8-11), native surface charge in aqueous conditions has not been used to assemble crystalline materials. Here we form ionic colloidal crystals in water through an approach that we refer to as polymer-attenuated Coulombic self-assembly. The key to crystallization is the use of a neutral polymer to keep particles separated by well defined distances, allowing us to tune the attractive overlap of electrical double layers, directing particles to disperse, crystallize or become permanently fixed on demand. The nucleation and growth of macroscopic single crystals is demonstrated by using the Debye screening length to fine-tune assembly. Using a variety of colloidal particles and commercial polymers, ionic colloidal crystals isostructural to caesium chloride, sodium chloride, aluminium diboride and K4C60 are selected according to particle size ratios. Once fixed by simply diluting out solution salts, crystals are pulled out of the water for further manipulation, demonstrating an accurate translation from solution-phase assembly to dried solid structures. In contrast to other assembly approaches, in which particles must be carefully engineered to encode binding information(12-18), polymer-attenuated Coulombic self-assembly enables conventional colloids to be used as model colloidal ions, primed for crystallization.