GSTDTAP

浏览/检索结果: 共15条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Multicomponent superconducting order parameter in UTe2 期刊论文
Science, 2021
作者:  I. M. Hayes;  D. S. Wei;  T. Metz;  J. Zhang;  Y. S. Eo;  S. Ran;  S. R. Saha;  J. Collini;  N. P. Butch;  D. F. Agterberg;  A. Kapitulnik;  J. Paglione
收藏  |  浏览/下载:10/0  |  提交时间:2021/08/17
Qubit spin ice 期刊论文
Science, 2021
作者:  Andrew D. King;  Cristiano Nisoli;  Edward D. Dahl;  Gabriel Poulin-Lamarre;  Alejandro Lopez-Bezanilla
收藏  |  浏览/下载:9/0  |  提交时间:2021/08/10
Topology in biology 新闻
来源平台:EurekAlert. 发布日期:2021
作者:  admin
收藏  |  浏览/下载:3/0  |  提交时间:2021/07/26
Marine animals inspire new approaches to structural topology optimization 新闻
来源平台:EurekAlert. 发布日期:2021
作者:  admin
收藏  |  浏览/下载:20/0  |  提交时间:2021/04/29
Whirls and swirls of polarization 期刊论文
Science, 2021
作者:  Lane W. Martin
收藏  |  浏览/下载:8/0  |  提交时间:2021/03/12
Ultrafast generation of optical hyperbolicity 期刊论文
Science, 2021
作者:  Shaozhi Deng;  Huanjun Chen
收藏  |  浏览/下载:13/0  |  提交时间:2021/02/17
New NCAR-Wyoming supercomputer to accelerate scientific discovery 新闻
来源平台:National Center of Atmospheric Research. 发布日期:2021
作者:  admin
收藏  |  浏览/下载:13/0  |  提交时间:2021/02/10
Can we predict solar flares? 期刊论文
Science, 2020
作者:  Astrid M. Veronig
收藏  |  浏览/下载:0/0  |  提交时间:2020/08/09
Solitons and topological waves 期刊论文
Science, 2020
作者:  Mark J. Ablowitz;  Justin T. Cole
收藏  |  浏览/下载:37/0  |  提交时间:2020/05/25
Electrical manipulation of a topological antiferromagnetic state 期刊论文
NATURE, 2020, 580 (7805) : 608-+
作者:  Chabon, Jacob J.;  Hamilton, Emily G.;  Kurtz, David M.;  Esfahani, Mohammad S.;  Moding, Everett J.;  Stehr, Henning;  Schroers-Martin, Joseph;  Nabet, Barzin Y.;  Chen, Binbin;  Chaudhuri, Aadel A.;  Liu, Chih Long;  Hui, Angela B.;  Jin, Michael C.;  Azad, Tej D.;  Almanza, Diego;  Jeon, Young-Jun;  Nesselbush, Monica C.;  Keh, Lyron Co Ting;  Bonilla, Rene F.;  Yoo, Christopher H.;  Ko, Ryan B.;  Chen, Emily L.;  Merriott, David J.;  Massion, Pierre P.;  Mansfield, Aaron S.;  Jen, Jin;  Ren, Hong Z.;  Lin, Steven H.;  Costantino, Christina L.;  Burr, Risa;  Tibshirani, Robert;  Gambhir, Sanjiv S.;  Berry, Gerald J.;  Jensen, Kristin C.;  West, Robert B.;  Neal, Joel W.;  Wakelee, Heather A.;  Loo, Billy W., Jr.;  Kunder, Christian A.;  Leung, Ann N.;  Lui, Natalie S.;  Berry, Mark F.;  Shrager, Joseph B.;  Nair, Viswam S.;  Haber, Daniel A.;  Sequist, Lecia V.;  Alizadeh, Ash A.;  Diehn, Maximilian
收藏  |  浏览/下载:37/0  |  提交时间:2020/07/03

Room-temperature electrical switching of a topological antiferromagnetic state in polycrystalline Mn3Sn thin films is demonstrated using the same protocol as that used for conventional ferromagnetic metals.


Electrical manipulation of phenomena generated by nontrivial band topology is essential for the development of next-generation technology using topological protection. A Weyl semimetal is a three-dimensional gapless system that hosts Weyl fermions as low-energy quasiparticles(1-4). It has various exotic properties, such as a large anomalous Hall effect (AHE) and chiral anomaly, which are robust owing to the topologically protected Weyl nodes(1-16). To manipulate such phenomena, a magnetic version of Weyl semimetals would be useful for controlling the locations of Weyl nodes in the Brillouin zone. Moreover, electrical manipulation of antiferromagnetic Weyl metals would facilitate the use of antiferromagnetic spintronics to realize high-density devices with ultrafast operation(17,18). However, electrical control of a Weyl metal has not yet been reported. Here we demonstrate the electrical switching of a topological antiferromagnetic state and its detection by the AHE at room temperature in a polycrystalline thin film(19) of the antiferromagnetic Weyl metal Mn3Sn9,10,12,20, which exhibits zero-field AHE. Using bilayer devices composed of Mn3Sn and nonmagnetic metals, we find that an electrical current density of about 10(10) to 10(11) amperes per square metre induces magnetic switching in the nonmagnetic metals, with a large change in Hall voltage. In addition, the current polarity along the bias field and the sign of the spin Hall angle of the nonmagnetic metals-positive for Pt (ref. (21)), close to 0 for Cu and negative for W (ref. (22))-determines the sign of the Hall voltage. Notably, the electrical switching in the antiferromagnet is achieved with the same protocol as that used for ferromagnetic metals(23,24). Our results may lead to further scientific and technological advances in topological magnetism and antiferromagnetic spintronics.