GSTDTAP

浏览/检索结果: 共81条,第1-10条 帮助

限定条件                
已选(0)清除 条数/页:   排序方式:
A 'tasty' protein may lead to new ways to treat metabolic and immune diseases 新闻
来源平台:EurekAlert. 发布日期:2021
作者:  admin
收藏  |  浏览/下载:2/0  |  提交时间:2021/07/26
Bile acids may play previously unknown role in Parkinson's 新闻
来源平台:EurekAlert. 发布日期:2021
作者:  admin
收藏  |  浏览/下载:6/0  |  提交时间:2021/02/10
Study: e-cigarettes trigger inflammation in the gut 新闻
来源平台:EurekAlert. 发布日期:2021
作者:  admin
收藏  |  浏览/下载:2/0  |  提交时间:2021/01/15
Antimicrobial soap additive worsens fatty liver disease in mice 新闻
来源平台:EurekAlert. 发布日期:2020
作者:  admin
收藏  |  浏览/下载:10/0  |  提交时间:2020/11/25
A tale of two cesspits: DNA reveals intestinal health in Medieval Europe and Middle East 新闻
来源平台:EurekAlert. 发布日期:2020
作者:  admin
收藏  |  浏览/下载:0/0  |  提交时间:2020/10/12
Inflammatory bowel disease linked to an immune cell run amok 新闻
来源平台:EurekAlert. 发布日期:2020
作者:  admin
收藏  |  浏览/下载:0/0  |  提交时间:2020/08/28
Scientists found genes that help cancer cells to penetrate the brain 新闻
来源平台:EurekAlert. 发布日期:2020
作者:  admin
收藏  |  浏览/下载:0/0  |  提交时间:2020/08/17
Neuronal programming by microbiota regulates intestinal physiology 期刊论文
NATURE, 2020, 578 (7794) : 284-+
作者:  Li, Yilong;  Roberts, Nicola D.;  Wala, Jeremiah A.;  Shapira, Ofer;  Schumacher, Steven E.;  Kumar, Kiran;  Khurana, Ekta;  Waszak, Sebastian;  Korbel, Jan O.;  Haber, James E.;  Imielinski, Marcin;  Weischenfeldt, Joachim;  Beroukhim, Rameen;  Campbell, Peter J.;  Akdemir, Kadir C.;  Alvarez, Eva G.;  Baez-Ortega, Adrian;  Boutros, Paul C.;  Bowtell, David D. L.;  Brors, Benedikt;  Burns, Kathleen H.;  Chan, Kin;  Chen, Ken;  Cortes-Ciriano, Isidro;  Dueso-Barroso, Ana;  Dunford, Andrew J.;  Edwards, Paul A.;  Estivill, Xavier;  Etemadmoghadam, Dariush;  Feuerbach, Lars;  Fink, J. Lynn;  Frenkel-Morgenstern, Milana;  Garsed, Dale W.;  Gerstein, Mark;  Gordenin, Dmitry A.;  Haan, David;  Hess, Julian M.;  Hutter, Barbara;  Jones, David T. W.;  Ju, Young Seok;  Kazanov, Marat D.;  Klimczak, Leszek J.;  Koh, Youngil;  Lee, Eunjung Alice;  Lee, Jake June-Koo;  Lynch, Andy G.;  Macintyre, Geoff;  Markowetz, Florian;  Martincorena, Inigo;  Martinez-Fundichely, Alexander;  Meyerson, Matthew;  Miyano, Satoru;  Nakagawa, Hidewaki;  Navarro, Fabio C. P.;  Ossowski, Stephan;  Park, Peter J.;  Pearson, John, V;  Puiggros, Montserrat;  Rippe, Karsten;  Roberts, Steven A.;  Rodriguez-Martin, Bernardo;  Scully, Ralph;  Shackleton, Mark;  Sidiropoulos, Nikos;  Sieverling, Lina;  Stewart, Chip;  Torrents, David;  Tubio, Jose M. C.;  Villasante, Izar;  Waddell, Nicola;  Yang, Lixing;  Yao, Xiaotong;  Yoon, Sung-Soo;  Zamora, Jorge;  Zhang, Cheng-Zhong
收藏  |  浏览/下载:40/0  |  提交时间:2020/07/03

Neural control of the function of visceral organs is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence, and is often dysregulated in gastrointestinal disorders(1). Luminal factors, such as diet and microbiota, regulate neurogenic programs of gut motility(2-5), but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor aryl hydrocarbon receptor (AHR) functions as a biosensor in intestinal neural circuits, linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons that represent distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles that are controlled by the combined effects of host genetic programs and microbial colonization. Microbiota-induced expression of AHR in neurons of the distal gastrointestinal tract enables these neurons to respond to the luminal environment and to induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in the enteric neurons of mice treated with antibiotics partially restores intestinal motility. Together, our experiments identify AHR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits to maintain gut homeostasis and health.


In a mouse model, aryl hydrocarbon receptor signalling in enteric neurons is revealed as a mechanism that helps to maintain gut homeostasis by integrating the luminal environment with the physiology of intestinal neural circuits.


  
Global chemical effects of the microbiome include new bile-acid conjugations 期刊论文
NATURE, 2020, 579 (7797) : 123-+
作者:  Dossin, Francois;  Pinheiro, Ines;  Zylicz, Jan J.;  Roensch, Julia;  Collombet, Samuel;  Le Saux, Agnes;  Chelmicki, Tomasz;  Attia, Mikael;  Kapoor, Varun;  Zhan, Ye;  Dingli, Florent;  Loew, Damarys;  Mercher, Thomas;  Dekker, Job;  Heard, Edith
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Metabolomics data from germ-free and specific-pathogen-free mice reveal effects of the microbiome on host chemistry, identifying conjugations of bile acids that are also enriched in patients with inflammatory bowel disease or cystic fibrosis.


A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease(1-9). Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units(10)), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches(11-13) to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry(14). These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis.


  
Tertiary lymphoid structures improve immunotherapy and survival in melanoma 期刊论文
NATURE, 2020, 577 (7791) : 561-+
作者:  Cabrita, Rita;  Lauss, Martin;  Sanna, Adriana;  Donia, Marco;  Larsen, Mathilde Skaarup;  Mitra, Shamik;  Johansson, Iva;  Phung, Bengt;  Harbst, Katja;  Vallon-Christersson, Johan;  van Schoiack, Alison;  Loevgren, Kristina;  Warren, Sarah;  Jirstroem, Karin;  Olsson, Hakan;  Pietras, Kristian;  Ingvar, Christian;  Isaksson, Karolin;  Schadendorf, Dirk;  Schmidt, Henrik;  Bastholt, Lars;  Carneiro, Ana;  Wargo, Jennifer A.;  Svane, Inge Marie;  Jonsson, Goran
收藏  |  浏览/下载:43/0  |  提交时间:2020/07/03

Checkpoint blockade therapies that reactivate tumour-associated T cells can induce durable tumour control and result in the long-term survival of patients with advanced cancers(1). Current predictive biomarkers for therapy response include high levels of intratumour immunological activity, a high tumour mutational burden and specific characteristics of the gut microbiota(2,3). Although the role of T cells in antitumour responses has thoroughly been studied, other immune cells remain insufficiently explored. Here we use clinical samples of metastatic melanomas to investigate the role of B cells in antitumour responses, and find that the co-occurrence of tumour-associated CD8(+) T cells and CD20(+) B cells is associated with improved survival, independently of other clinical variables. Immunofluorescence staining of CXCR5 and CXCL13 in combination with CD20 reveals the formation of tertiary lymphoid structures in these CD8(+)CD20(+) tumours. We derived a gene signature associated with tertiary lymphoid structures, which predicted clinical outcomes in cohorts of patients treated with immune checkpoint blockade. Furthermore, B-cell-rich tumours were accompanied by increased levels of TCF7(+) naive and/or memory T cells. This was corroborated by digital spatial-profiling data, in which T cells in tumours without tertiary lymphoid structures had a dysfunctional molecular phenotype. Our results indicate that tertiary lymphoid structures have a key role in the immune microenvironment in melanoma, by conferring distinct T cell phenotypes. Therapeutic strategies to induce the formation of tertiary lymphoid structures should be explored to improve responses to cancer immunotherapy.


The co-occurrence of tumour-associated CD8(+) T cells and CD20(+) B cells, and the formation of tertiary lymphoid structures, are linked with improved survival in cohorts of patients with metastatic melanoma.