GSTDTAP

浏览/检索结果: 共16条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Persistently well-ventilated intermediate-depth ocean through the last deglaciation 期刊论文
Nature, 2020
作者:  Tianyu Chen;  Laura F. Robinson;  Andrea Burke;  Louis Claxton;  Mathis P. Hain;  Tao Li;  James W. B. Rae;  Joseph Stewart;  Timothy D. J. Knowles;  Daniel J. Fornari;  Karen S. Harpp
收藏  |  浏览/下载:13/0  |  提交时间:2020/10/20
An investigation on hygroscopic properties of 15 black carbon (BC)-containing particles from different carbon sources: roles of organic and inorganic components 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (13) : 7941-7954
作者:  Wang, Minli;  Chen, Yiqun;  Fu, Heyun;  Qu, Xiaolei;  Li, Bengang;  Tao, Shu;  Zhu, Dongqiang
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/14
Marine organic matter in the remote environment of the Cape Verde islands - an introduction and overview to the MarParCloud campaign 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (11) : 6921-6951
作者:  van Pinxteren, Manuela;  Fomba, Khanneh Wadinga;  Triesch, Nadja;  Stolle, Christian;  Wurl, Oliver;  Bahlmann, Enno;  Gong, Xianda;  Voigtlaender, Jens;  Wex, Heike;  Robinson, Tiera-Brandy;  Barthel, Stefan;  Zeppenfeld, Sebastian;  Hoffmann, Erik Hans;  Roveretto, Marie;  Li, Chunlin;  Grosselin, Benoit;  Daele, Veronique;  Senf, Fabian;  van Pinxteren, Dominik;  Manzi, Malena;  Zabalegui, Nicolas;  Frka, Sanja;  Gasparovic, Blazenka;  Pereira, Ryan;  Li, Tao;  Wen, Liang;  Li, Jiarong;  Zhu, Chao;  Chen, Hui;  Chen, Jianmin;  Fiedler, Bjoern;  Von Tuempling, Wolf;  Read, Katie Alana;  Punjabi, Shalini;  Lewis, Alastair Charles;  Hopkins, James Roland;  Carpenter, Lucy Jane;  Peeken, Ilka;  Rixen, Tim;  Schulz-Bull, Detlef;  Monge, Maria Eugenia;  Mellouki, Abdelwahid;  George, Christian;  Stratmann, Frank;  Herrmann, Hartmut
收藏  |  浏览/下载:25/0  |  提交时间:2020/08/18
Measurement report: Vertical distribution of atmospheric particulate matter within the urban boundary layer in southern China - size-segregated chemical composition and secondary formation through cloud processing and heterogeneous reactions 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (11) : 6435-6453
作者:  Zhou, Shengzhen;  Wu, Luolin;  Guo, Junchen;  Chen, Weihua;  Wang, Xuemei;  Zhao, Jun;  Cheng, Yafang;  Huang, Zuzhao;  Zhang, Jinpu;  Sun, Yele;  Fu, Pingqing;  Jia, Shiguo;  Tao, Jun;  Chen, Yanning;  Kuang, Junxia
收藏  |  浏览/下载:11/0  |  提交时间:2020/06/09
DNA-repair enzyme turns to translation 期刊论文
NATURE, 2020, 579 (7798) : 198-199
作者:  Bian, Zhilei;  Gong, Yandong;  Huang, Tao;  Lee, Christopher Z. W.;  Bian, Lihong;  Bai, Zhijie;  Shi, Hui;  Zeng, Yang;  Liu, Chen;  He, Jian;  Zhou, Jie;  Li, Xianlong;  Li, Zongcheng;  Ni, Yanli;  Ma, Chunyu;  Cui, Lei;  Zhang, Rui;  Chan, Jerry K. Y.;  Ng, Lai Guan;  Lan, Yu;  Ginhoux, Florent;  Liu, Bing
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

A key DNA-repair enzyme has a surprising role during the early steps in the assembly of ribosomes - the molecular machines that translate the genetic code into protein.


  
Increased new particle yields with largely decreased probability of survival to CCN size at the summit of Mt. Tai under reduced SO2 emissions 期刊论文
Atmospheric Chemistry and Physics, 2020
作者:  Yujiao Zhu, Likun Xue, Jian Gao, Jianmin Chen, Hongyong Li, Yong Zhao, Zhaoxin Guo, Tianshu Chen, Liang Wen, Penggang Zheng, Ye Shan, Xinfeng Wang, Tao Wang, Xiaohong Yao, and Wenxing Wang
收藏  |  浏览/下载:21/0  |  提交时间:2020/05/20
A radar reflectivity data assimilation method based on background-dependent hydrometeor retrieval: An observing system simulation experiment 期刊论文
Atmospheric Research, 2020
作者:  Haiqin Chen, Yaodeng Chen, Jidong Gao, Tao Sun, Jacob T. Carlin
收藏  |  浏览/下载:6/0  |  提交时间:2020/05/13
Structure and mechanism of human diacylglycerol O-acyltransferase 1 期刊论文
NATURE, 2020, 581 (7808) : 329-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

The structure of human diacylglycerol O-acyltransferase 1, a membrane protein that synthesizes triacylglycerides, is solved with cryo-electron microscopy, providing insight into its function and mechanism of enzymatic activity.


Diacylglycerol O-acyltransferase 1 (DGAT1) synthesizes triacylglycerides and is required for dietary fat absorption and fat storage in humans(1). DGAT1 belongs to the membrane-bound O-acyltransferase (MBOAT) superfamily, members of which are found in all kingdoms of life and are involved in the acylation of lipids and proteins(2,3). How human DGAT1 and other mammalian members of the MBOAT family recognize their substrates and catalyse their reactions is unknown. The absence of three-dimensional structures also hampers rational targeting of DGAT1 for therapeutic purposes. Here we present the cryo-electron microscopy structure of human DGAT1 in complex with an oleoyl-CoA substrate. Each DGAT1 protomer has nine transmembrane helices, eight of which form a conserved structural fold that we name the MBOAT fold. The MBOAT fold in DGAT1 forms a hollow chamber in the membrane that encloses highly conserved catalytic residues. The chamber has separate entrances for each of the two substrates, fatty acyl-CoA and diacylglycerol. DGAT1 can exist as either a homodimer or a homotetramer and the two forms have similar enzymatic activity. The N terminus of DGAT1 interacts with the neighbouring protomer and these interactions are required for enzymatic activity.


  
Heterogeneous N2O5 reactions on atmospheric aerosols at four Chinese sites: improving model representation of uptake parameters 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (7) : 4367-4378
作者:  Yu, Chuan;  Wang, Zhe;  Xia, Men;  Fu, Xiao;  Wang, Weihao;  Tham, Yee Jun;  Chen, Tianshu;  Zheng, Penggang;  Li, Hongyong;  Shan, Ye;  Wang, Xinfeng;  Xue, Likun;  Zhou, Yue;  Yue, Dingli;  Ou, Yubo;  Gao, Jian;  Lu, Keding;  Brown, Steven S.;  Zhang, Yuanhang;  Wang, Tao
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/02
The online competition between pro- and anti-vaccination views 期刊论文
NATURE, 2020, 582 (7811) : 230-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Insights into the interactions between pro- and anti-vaccination clusters on Facebook can enable policies and approaches that attempt to interrupt the shift to anti-vaccination views and persuade undecided individuals to adopt a pro-vaccination stance.


Distrust in scientific expertise(1-14) is dangerous. Opposition to vaccination with a future vaccine against SARS-CoV-2, the causal agent of COVID-19, for example, could amplify outbreaks(2-4), as happened for measles in 2019(5,6). Homemade remedies(7,8) and falsehoods are being shared widely on the Internet, as well as dismissals of expert advice(9-11). There is a lack of understanding about how this distrust evolves at the system level(13,14). Here we provide a map of the contention surrounding vaccines that has emerged from the global pool of around three billion Facebook users. Its core reveals a multi-sided landscape of unprecedented intricacy that involves nearly 100 million individuals partitioned into highly dynamic, interconnected clusters across cities, countries, continents and languages. Although smaller in overall size, anti-vaccination clusters manage to become highly entangled with undecided clusters in the main online network, whereas pro-vaccination clusters are more peripheral. Our theoretical framework reproduces the recent explosive growth in anti-vaccination views, and predicts that these views will dominate in a decade. Insights provided by this framework can inform new policies and approaches to interrupt this shift to negative views. Our results challenge the conventional thinking about undecided individuals in issues of contention surrounding health, shed light on other issues of contention such as climate change(11), and highlight the key role of network cluster dynamics in multi-species ecologies(15).