GSTDTAP

浏览/检索结果: 共8条,第1-8条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Radiative effects of clouds and fog on long-lasting heavy fog events in northern China 期刊论文
Atmospheric Research, 2020
作者:  Lijun Guo, Xueliang Guo, Tian Luan, Shichao Zhu, Kai Lyu
收藏  |  浏览/下载:9/0  |  提交时间:2021/01/15
Global soil‐derived ammonia emissions from agricultural nitrogen fertilizer application: A refinement based on regional and crop‐specific emission factors 期刊论文
Global Change Biology, 2020
作者:  Ruoya Ma;  Jianwen Zou;  Zhaoqiang Han;  Kai Yu;  Shuang Wu;  Zhaofu Li;  Shuwei Liu;  Shuli Niu;  William R. Horwath;  Xia Zhu‐;  Barker
收藏  |  浏览/下载:15/0  |  提交时间:2020/11/30
Remote sensing‐based modeling of the bathymetry and water storage for channel‐type reservoirs worldwide 期刊论文
Water Resources Research, 2020
作者:  Kai Liu;  Chunqiao Song;  Jida Wang;  Linghong Ke;  Yunqiang Zhu;  Jingying Zhu;  Ronghua Ma;  Zhu Luo
收藏  |  浏览/下载:15/0  |  提交时间:2020/10/26
Ecological Dynamics: Integrating Empirical, Statistical, and Analytical Methods 期刊论文
Trends in Ecology & Evolution\, 2020
作者:  Amanda N. Laubmeier:Bernard Cazelles:Kim Cuddington:Kelley D. Erickson:Marie-Josée Fortin:Kiona Ogle:Christopher K. Wikle:Kai Zhu:Elise F. Zipkin
收藏  |  浏览/下载:10/0  |  提交时间:2020/09/14
Sustainable lead management in halide perovskite solar cells 期刊论文
Nature, 2020
作者:  So Yeon Park;  Ji-Sang Park;  Byeong Jo Kim;  Hyemin Lee;  Aron Walsh;  Kai Zhu;  Dong Hoe Kim;  Hyun Suk Jung
收藏  |  浏览/下载:9/0  |  提交时间:2020/08/18
Causes of slowing‐down seasonal CO2 amplitude at Mauna Loa 期刊论文
Global Change Biology, 2020
作者:  Kai Wang;  Yilong Wang;  Xuhui Wang;  Yue He;  Xiangyi Li;  Ralph F. Keeling;  Philippe Ciais;  Martin Heimann;  Shushi Peng;  Fré;  ;  ric Chevallier;  Pierre Friedlingstein;  Stephen Sitch;  Wolfgang Buermann;  Vivek K. Arora;  Vanessa Haverd;  Atul K. Jain;  Etsushi Kato;  Sebastian Lienert;  Danica Lombardozzi;  Julia E. M. S. Nabel;  Benjamin Poulter;  Nicolas Vuichard;  Andy Wiltshire;  Ning Zeng;  Dan Zhu;  Shilong Piao
收藏  |  浏览/下载:14/0  |  提交时间:2020/06/22
Recycling and metabolic flexibility dictate life in the lower oceanic crust 期刊论文
NATURE, 2020, 579 (7798) : 250-+
作者:  Zhou, Peng;  Yang, Xing-Lou;  Wang, Xian-Guang;  Hu, Ben;  Zhang, Lei;  Zhang, Wei;  Si, Hao-Rui;  Zhu, Yan;  Li, Bei;  Huang, Chao-Lin;  Chen, Hui-Dong;  Chen, Jing;  Luo, Yun;  Guo, Hua;  Jiang, Ren-Di;  Liu, Mei-Qin;  Chen, Ying;  Shen, Xu-Rui;  Wang, Xi;  Zheng, Xiao-Shuang;  Zhao, Kai;  Chen, Quan-Jiao;  Deng, Fei;  Liu, Lin-Lin;  Yan, Bing;  Zhan, Fa-Xian;  Wang, Yan-Yi;  Xiao, Geng-Fu;  Shi, Zheng-Li
收藏  |  浏览/下载:37/0  |  提交时间:2020/05/13

The lithified lower oceanic crust is one of Earth'  s last biological frontiers as it is difficult to access. It is challenging for microbiota that live in marine subsurface sediments or igneous basement to obtain sufficient carbon resources and energy to support growth(1-3) or to meet basal power requirements(4) during periods of resource scarcity. Here we show how limited and unpredictable sources of carbon and energy dictate survival strategies used by low-biomass microbial communities that live 10-750 m below the seafloor at Atlantis Bank, Indian Ocean, where Earth'  s lower crust is exposed at the seafloor. Assays of enzyme activities, lipid biomarkers, marker genes and microscopy indicate heterogeneously distributed and viable biomass with ultralow cell densities (fewer than 2,000 cells per cm(3)). Expression of genes involved in unexpected heterotrophic processes includes those with a role in the degradation of polyaromatic hydrocarbons, use of polyhydroxyalkanoates as carbon-storage molecules and recycling of amino acids to produce compounds that can participate in redox reactions and energy production. Our study provides insights into how microorganisms in the plutonic crust are able to survive within fractures or porous substrates by coupling sources of energy to organic and inorganic carbon resources that are probably delivered through the circulation of subseafloor fluids or seawater.


  
DNA-loop extruding condensin complexes can traverse one another 期刊论文
NATURE, 2020
作者:  Li, Xun;  Zhang, Fei;  He, Haiying;  Berry, Joseph J.;  Zhu, Kai;  Xu, Tao
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

Condensin, a key component of the structure maintenance of chromosome (SMC) protein complexes, has recently been shown to be a motor that extrudes loops of DNA(1). It remains unclear, however, how condensin complexes work together to collectively package DNA into chromosomes. Here we use time-lapse single-molecule visualization to study mutual interactions between two DNA-loop-extruding yeast condensins. We find that these motor proteins, which, individually, extrude DNA in one direction only are able to dynamically change each other'  s DNA loop sizes, even when far apart. When they are in close proximity, condensin complexes are able to traverse each other and form a loop structure, which we term a Z-loop-three double-stranded DNA helices aligned in parallel with one condensin at each edge. Z-loops can fill gaps left by single loops and can form symmetric dimer motors that pull in DNA from both sides. These findings indicate that condensin may achieve chromosomal compaction using a variety of looping structures.


Single-molecule visualization shows that condensin-a motor protein that extrudes DNA in one direction only-can encounter and pass a second condensin molecule to form a new type of DNA loop that gathers DNA from both sides.