GSTDTAP

浏览/检索结果: 共24条,第1-10条 帮助

限定条件                
已选(0)清除 条数/页:   排序方式:
Mycorrhizal distributions impact global patterns of carbon and nutrient cycling 期刊论文
Geophysical Research Letters, 2021
作者:  R. K. Braghiere;  J. B. Fisher;  R. A. Fisher;  M. Shi;  B. S. Steidinger;  B. N. Sulman;  N. A. Soudzilovskaia;  X. Yang;  J. Liang;  K. G. Peay;  T. W. Crowther;  R. P. Phillips
收藏  |  浏览/下载:12/0  |  提交时间:2021/10/07
Peta–electron volt gamma-ray emission from the Crab Nebula 期刊论文
Science, 2021
作者:  The LHAASO Collaboration*†;  Zhen Cao;  F. Aharonian;  Q. An;  Axikegu;  L. X. Bai;  Y. X. Bai;  Y. W. Bao;  D. Bastieri;  X. J. Bi;  Y. J. Bi;  H. Cai;  J. T. Cai;  Zhe Cao;  J. Chang;  J. F. Chang;  B. M. Chen;  E. S. Chen;  J. Chen;  Liang Chen;  Liang Chen;  Long Chen;  M. J. Chen;  M. L. Chen;  Q. H. Chen;  S. H. Chen;  S. Z. Chen;  T. L. Chen;  X. L. Chen;  Y. Chen;  N. Cheng;  Y. D. Cheng;  S. W. Cui;  X. H. Cui;  Y. D. Cui;  B. D’Ettorre Piazzoli;  B. Z. Dai;  H. L. Dai;  Z. G. Dai;  Danzengluobu;  D. della Volpe;  X. J. Dong;  K. K. Duan;  J. H. Fan;  Y. Z. Fan;  Z. X. Fan;  J. Fang;  K. Fang;  C. F. Feng;  L. Feng;  S. H. Feng;  Y. L. Feng;  B. Gao;  C. D. Gao;  L. Q. Gao;  Q. Gao;  W. Gao;  M. M. Ge;  L. S. Geng;  G. H. Gong;  Q. B. Gou;  M. H. Gu;  F. L. Guo;  J. G. Guo;  X. L. Guo;  Y. Q. Guo;  Y. Y. Guo;  Y. A. Han;  H. H. He;  H. N. He;  J. C. He;  S. L. He;  X. B. He;  Y. He;  M. Heller;  Y. K. Hor;  C. Hou;  X. Hou;  H. B. Hu;  S. Hu;  S. C. Hu;  X. J. Hu;  D. H. Huang;  Q. L. Huang;  W. H. Huang;  X. T. Huang;  X. Y. Huang;  Z. C. Huang;  F. Ji;  X. L. Ji;  H. Y. Jia;  K. Jiang;  Z. J. Jiang;  C. Jin;  T. Ke;  D. Kuleshov;  K. Levochkin;  B. B. Li;  Cheng Li;  Cong Li;  F. Li;  H. B. Li;  H. C. Li;  H. Y. Li;  Jian Li;  Jie Li;  K. Li;  W. L. Li;  X. R. Li;  Xin Li;  Xin Li;  Y. Li;  Y. Z. Li;  Zhe Li;  Zhuo Li;  E. W. Liang;  Y. F. Liang;  S. J. Lin;  B. Liu;  C. Liu;  D. Liu;  H. Liu;  H. D. Liu;  J. Liu;  J. L. Liu;  J. S. Liu;  J. Y. Liu;  M. Y. Liu;  R. Y. Liu;  S. M. Liu;  W. Liu;  Y. Liu;  Y. N. Liu;  Z. X. Liu;  W. J. Long;  R. Lu;  H. K. Lv;  B. Q. Ma;  L. L. Ma;  X. H. Ma;  J. R. Mao;  A. Masood;  Z. Min;  W. Mitthumsiri;  T. Montaruli;  Y. C. Nan;  B. Y. Pang;  P. Pattarakijwanich;  Z. Y. Pei;  M. Y. Qi;  Y. Q. Qi;  B. Q. Qiao;  J. J. Qin;  D. Ruffolo;  V. Rulev;  A. Saiz;  L. Shao;  O. Shchegolev;  X. D. Sheng;  J. Y. Shi;  H. C. Song;  Yu. V. Stenkin;  V. Stepanov;  Y. Su;  Q. N. Sun;  X. N. Sun;  Z. B. Sun;  P. H. T. Tam;  Z. B. Tang;  W. W. Tian;  B. D. Wang;  C. Wang;  H. Wang;  H. G. Wang;  J. C. Wang;  J. S. Wang;  L. P. Wang;  L. Y. Wang;  R. N. Wang;  Wei Wang;  Wei Wang;  X. G. Wang;  X. J. Wang;  X. Y. Wang;  Y. Wang;  Y. D. Wang;  Y. J. Wang;  Y. P. Wang;  Z. H. Wang;  Z. X. Wang;  Zhen Wang;  Zheng Wang;  D. M. Wei;  J. J. Wei;  Y. J. Wei;  T. Wen;  C. Y. Wu;  H. R. Wu;  S. Wu;  W. X. Wu;  X. F. Wu;  S. Q. Xi;  J. Xia;  J. J. Xia;  G. M. Xiang;  D. X. Xiao;  G. Xiao;  H. B. Xiao;  G. G. Xin;  Y. L. Xin;  Y. Xing;  D. L. Xu;  R. X. Xu;  L. Xue;  D. H. Yan;  J. Z. Yan;  C. W. Yang;  F. F. Yang;  J. Y. Yang;  L. L. Yang;  M. J. Yang;  R. Z. Yang;  S. B. Yang;  Y. H. Yao;  Z. G. Yao;  Y. M. Ye;  L. Q. Yin;  N. Yin;  X. H. You;  Z. Y. You;  Y. H. Yu;  Q. Yuan;  H. D. Zeng;  T. X. Zeng;  W. Zeng;  Z. K. Zeng;  M. Zha;  X. X. Zhai;  B. B. Zhang;  H. M. Zhang;  H. Y. Zhang;  J. L. Zhang;  J. W. Zhang;  L. X. Zhang;  Li Zhang;  Lu Zhang;  P. F. Zhang;  P. P. Zhang;  R. Zhang;  S. R. Zhang;  S. S. Zhang;  X. Zhang;  X. P. Zhang;  Y. F. Zhang;  Y. L. Zhang;  Yi Zhang;  Yong Zhang;  B. Zhao;  J. Zhao;  L. Zhao;  L. Z. Zhao;  S. P. Zhao;  F. Zheng;  Y. Zheng;  B. Zhou;  H. Zhou;  J. N. Zhou;  P. Zhou;  R. Zhou;  X. X. Zhou;  C. G. Zhu;  F. R. Zhu;  H. Zhu;  K. J. Zhu;  X. Zuo
收藏  |  浏览/下载:14/0  |  提交时间:2021/07/27
Parallel molecular mechanisms for enzyme temperature adaptation 期刊论文
Science, 2021
作者:  Margaux M. Pinney;  Daniel A. Mokhtari;  Eyal Akiva;  Filip Yabukarski;  David M. Sanchez;  Ruibin Liang;  Tzanko Doukov;  Todd J. Martinez;  Patricia C. Babbitt;  Daniel Herschlag
收藏  |  浏览/下载:7/0  |  提交时间:2021/03/12
De novo design of transmembrane β barrels 期刊论文
Science, 2021
作者:  Anastassia A. Vorobieva;  Paul White;  Binyong Liang;  Jim E. Horne;  Asim K. Bera;  Cameron M. Chow;  Stacey Gerben;  Sinduja Marx;  Alex Kang;  Alyssa Q. Stiving;  Sophie R. Harvey;  Dagan C. Marx;  G. Nasir Khan;  Karen G. Fleming;  Vicki H. Wysocki;  David J. Brockwell;  Lukas K. Tamm;  Sheena E. Radford;  David Baker
收藏  |  浏览/下载:8/0  |  提交时间:2021/02/22
Global fading of the temperature–growth coupling at alpine and polar treelines 期刊论文
Global Change Biology, 2021
作者:  Jesú;  s Julio Camarero;  Antonio Gazol;  Raú;  l Sá;  nchez‐;  Salguero;  Alex Fajardo;  Eliot J. B. McIntire;  Emilia Gutié;  rrez;  Enric Batllori;  Sté;  phane Boudreau;  Marco Carrer;  Jeff Diez;  Geneviè;  ve Dufour‐;  Tremblay;  Narayan P. Gaire;  Annika Hofgaard;  Vincent Jomelli;  Alexander V. Kirdyanov;  Esther Lé;  vesque;  Eryuan Liang;  Juan Carlos Linares;  Ingrid E. Mathisen;  Pavel A. Moiseev;  Gabriel Sangü;  esa‐;  Barreda;  Krishna B. Shrestha;  Johanna M. Toivonen;  Olga V. Tutubalina;  Martin Wilmking
收藏  |  浏览/下载:28/0  |  提交时间:2021/02/17
An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike 期刊论文
Science, 2020
作者:  Michael Schoof;  Bryan Faust;  Reuben A. Saunders;  Smriti Sangwan;  Veronica Rezelj;  Nick Hoppe;  Morgane Boone;  Christian B. Billesbølle;  Cristina Puchades;  Caleigh M. Azumaya;  Huong T. Kratochvil;  Marcell Zimanyi;  Ishan Deshpande;  Jiahao Liang;  Sasha Dickinson;  Henry C. Nguyen;  Cynthia M. Chio;  Gregory E. Merz;  Michael C. Thompson;  Devan Diwanji;  Kaitlin Schaefer;  Aditya A. Anand;  Niv Dobzinski;  Beth Shoshana Zha;  Camille R. Simoneau;  Kristoffer Leon;  Kris M. White;  Un Seng Chio;  Meghna Gupta;  Mingliang Jin;  Fei Li;  Yanxin Liu;  Kaihua Zhang;  David Bulkley;  Ming Sun;  Amber M. Smith;  Alexandrea N. Rizo;  Frank Moss;  Axel F. Brilot;  Sergei Pourmal;  Raphael Trenker;  Thomas Pospiech;  Sayan Gupta;  Benjamin Barsi-Rhyne;  Vladislav Belyy;  Andrew W. Barile-Hill;  Silke Nock;  Yuwei Liu;  Nevan J. Krogan;  Corie Y. Ralston;  Danielle L. Swaney;  Adolfo García-Sastre;  Melanie Ott;  Marco Vignuzzi;  QCRG Structural Biology Consortium4‡;  Peter Walter;  Aashish Manglik
收藏  |  浏览/下载:15/0  |  提交时间:2020/12/22
COSORE: A community database for continuous soil respiration and other soil‐atmosphere greenhouse gas flux data 期刊论文
Global Change Biology, 2020
作者:  Ben Bond‐;  Lamberty;  Danielle S. Christianson;  Avni Malhotra;  Stephanie C. Pennington;  Debjani Sihi;  Amir AghaKouchak;  Hassan Anjileli;  M. Altaf Arain;  Juan J. Armesto;  Samaneh Ashraf;  Mioko Ataka;  Dennis Baldocchi;  Thomas Andrew Black;  Nina Buchmann;  Mariah S. Carbone;  Shih‐;  Chieh Chang;  Patrick Crill;  Peter S. Curtis;  Eric A. Davidson;  Ankur R. Desai;  John E. Drake;  Tarek S. El‐;  Madany;  Michael Gavazzi;  Carolyn‐;  Monika Gö;  rres;  Christopher M. Gough;  Michael Goulden;  Jillian Gregg;  Omar Gutié;  rrez del Arroyo;  Jin‐;  Sheng He;  Takashi Hirano;  Anya Hopple;  Holly Hughes;  ;  rvi Jä;  rveoja;  Rachhpal Jassal;  Jinshi Jian;  Haiming Kan;  Jason Kaye;  Yuji Kominami;  Naishen Liang;  David Lipson;  Catriona A. Macdonald;  Kadmiel Maseyk;  Kayla Mathes;  Marguerite Mauritz;  Melanie A. Mayes;  Steve McNulty;  Guofang Miao;  Mirco Migliavacca;  Scott Miller;  Chelcy F. Miniat;  Jennifer G. Nietz;  Mats B. Nilsson;  Asko Noormets;  Hamidreza Norouzi;  Christine S. O’;  Connell;  Bruce Osborne;  Cecilio Oyonarte;  Zhuo Pang;  Matthias Peichl;  Elise Pendall;  Jorge F. Perez‐;  Quezada;  Claire L. Phillips;  Richard P. Phillips;  James W. Raich;  Alexandre A. Renchon;  Nadine K. Ruehr;  Enrique P. Sá;  nchez‐;  Cañ;  ete;  Matthew Saunders;  Kathleen E. Savage;  Marion Schrumpf;  Russell L. Scott;  Ulli Seibt;  Whendee L. Silver;  Wu Sun;  Daphne Szutu;  Kentaro Takagi;  Masahiro Takagi;  Munemasa Teramoto;  Mark G. Tjoelker;  Susan Trumbore;  Masahito Ueyama;  Rodrigo Vargas;  Ruth K. Varner;  Joseph Verfaillie;  Christoph Vogel;  Jinsong Wang;  Greg Winston;  Tana E. Wood;  Juying Wu;  Thomas Wutzler;  Jiye Zeng;  Tianshan Zha;  Quan Zhang;  Junliang Zou
收藏  |  浏览/下载:15/0  |  提交时间:2020/10/12
An orally available non-nucleotide STING agonist with antitumor activity 期刊论文
Science, 2020
作者:  Bo-Sheng Pan;  Samanthi A. Perera;  Jennifer A. Piesvaux;  Jeremy P. Presland;  Gottfried K. Schroeder;  Jared N. Cumming;  B. Wesley Trotter;  Michael D. Altman;  Alexei V. Buevich;  Brandon Cash;  Saso Cemerski;  Wonsuk Chang;  Yiping Chen;  Peter J. Dandliker;  Guo Feng;  Andrew Haidle;  Timothy Henderson;  James Jewell;  Ilona Kariv;  Ian Knemeyer;  Johnny Kopinja;  Brian M. Lacey;  Jason Laskey;  Charles A. Lesburg;  Rui Liang;  Brian J. Long;  Min Lu;  Yanhong Ma;  Ellen C. Minnihan;  Greg O’Donnell;  Ryan Otte;  Laura Price;  Larissa Rakhilina;  Berengere Sauvagnat;  Sharad Sharma;  Sriram Tyagarajan;  Hyun Woo;  Daniel F. Wyss;  Serena Xu;  David Jonathan Bennett;  George H. Addona
收藏  |  浏览/下载:14/0  |  提交时间:2020/08/25
Microbiome analyses of blood and tissues suggest cancer diagnostic approach 期刊论文
NATURE, 2020, 579 (7800) : 567-+
作者:  Shao, Zhengping;  Flynn, Ryan A.;  Crowe, Jennifer L.;  Zhu, Yimeng;  Liang, Jialiang;  Jiang, Wenxia;  Aryan, Fardin;  Aoude, Patrick;  Bertozzi, Carolyn R.;  Estes, Verna M.;  Lee, Brian J.;  Bhagat, Govind;  Zha, Shan;  Calo, Eliezer
收藏  |  浏览/下载:54/0  |  提交时间:2020/07/03

Microbial nucleic acids are detected in samples of tissues and blood from more than 10,000 patients with cancer, and machine learning is used to show that these can be used to discriminate between and among different types of cancer, suggesting a new microbiome-based diagnostic approach.


Systematic characterization of the cancer microbiome provides the opportunity to develop techniques that exploit non-human, microorganism-derived molecules in the diagnosis of a major human disease. Following recent demonstrations that some types of cancer show substantial microbial contributions(1-10), we re-examined whole-genome and whole-transcriptome sequencing studies in The Cancer Genome Atlas(11) (TCGA) of 33 types of cancer from treatment-naive patients (a total of 18,116 samples) for microbial reads, and found unique microbial signatures in tissue and blood within and between most major types of cancer. These TCGA blood signatures remained predictive when applied to patients with stage Ia-IIc cancer and cancers lacking any genomic alterations currently measured on two commercial-grade cell-free tumour DNA platforms, despite the use of very stringent decontamination analyses that discarded up to 92.3% of total sequence data. In addition, we could discriminate among samples from healthy, cancer-free individuals (n = 69) and those from patients with multiple types of cancer (prostate, lung, and melanoma  100 samples in total) solely using plasma-derived, cell-free microbial nucleic acids. This potential microbiome-based oncology diagnostic tool warrants further exploration.


  
The molecular basis for sugar import in malaria parasites 期刊论文
NATURE, 2020, 578 (7794) : 321-+
作者:  Zhao, Peishen;  Liang, Yi-Lynn;  Belousoff, Matthew J.;  Deganutti, Giuseppe;  Fletcher, Madeleine M.;  Willard, Francis S.;  Bell, Michael G.;  Christe, Michael E.;  Sloop, Kyle W.;  Inoue, Asuka;  Truong, Tin T.;  Clydesdale, Lachlan;  Furness, Sebastian G. B.;  Christopoulos, Arthur;  Wang, Ming-Wei;  Miller, Laurence J.;  Reynolds, Christopher A.;  Danev, Radostin;  Sexton, Patrick M.;  Wootten, Denise
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/03

Elucidating the mechanism of sugar import requires a molecular understanding of how transporters couple sugar binding and gating events. Whereas mammalian glucose transporters (GLUTs) are specialists(1), the hexose transporter from the malaria parasite Plasmodium falciparum PfHT1(2,3) has acquired the ability to transport both glucose and fructose sugars as efficiently as the dedicated glucose (GLUT3) and fructose (GLUT5) transporters. Here, to establish the molecular basis of sugar promiscuity in malaria parasites, we determined the crystal structure of PfHT1 in complex with d-glucose at a resolution of 3.6 angstrom. We found that the sugar-binding site in PfHT1 is very similar to those of the distantly related GLUT3 and GLUT5 structures(4,5). Nevertheless, engineered PfHT1 mutations made to match GLUT sugar-binding sites did not shift sugar preferences. The extracellular substrate-gating helix TM7b in PfHT1 was positioned in a fully occluded conformation, providing a unique glimpse into how sugar binding and gating are coupled. We determined that polar contacts between TM7b and TM1 (located about 15 angstrom from d-glucose) are just as critical for transport as the residues that directly coordinate d-glucose, which demonstrates a strong allosteric coupling between sugar binding and gating. We conclude that PfHT1 has achieved substrate promiscuity not by modifying its sugar-binding site, but instead by evolving substrate-gating dynamics.


Crystal structure of the Plasmodium falciparum hexose transporter PfHT1 reveals the molecular basis of its ability to transport multiple types of sugar as efficiently as the dedicated mammalian glucose and fructose transporters.