GSTDTAP

浏览/检索结果: 共34条,第1-10条 帮助

限定条件                
已选(0)清除 条数/页:   排序方式:
“2030年海底计划”完成26.1%的全球海底绘制 快报文章
资源环境快报,2024年第12期
作者:  薛明媚,王金平
Microsoft Word(13Kb)  |  收藏  |  浏览/下载:4/1  |  提交时间:2024/06/29
Seabed 2030 Project  UN Ocean Decade  Ocean Mapping  
Nature:卫星成像技术揭示海洋中广泛的工业活动 快报文章
资源环境快报,2024年第1期
作者:  薛明媚,王金平
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:454/0  |  提交时间:2024/01/15
Satellite Mapping  Blue Economy  Offshore Industry  
过去20年来全球沿海湿地急剧丧失 快报文章
资源环境快报,2022年第10期
作者:  裴惠娟
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:627/0  |  提交时间:2022/06/02
Tidal Wetlands  Losses and Gains  Mapping  
英国南极调查局更新南极地图数据库 快报文章
资源环境快报,2020年第10期
作者:  王立伟,宋晓谕
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:378/0  |  提交时间:2020/05/28
Antarctica  Mapping Datasets  
Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping 期刊论文
NATURE, 2020, 583 (7817) : 638-+
作者:  Lin, Yiheng;  Leibrandt, David R.;  Leibfriedz, Dietrich;  Chou, Chin-wen
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

A method termed ac(4)C-seq is introduced for the transcriptome-wide mapping of the RNA modificationN(4)-acetylcytidine, revealing widespread temperature-dependent acetylation that facilitates thermoadaptation in hyperthermophilic archaea.


N-4-acetylcytidine (ac(4)C) is an ancient and highly conserved RNA modification that is present on tRNA and rRNA and has recently been investigated in eukaryotic mRNA(1-3). However, the distribution, dynamics and functions of cytidine acetylation have yet to be fully elucidated. Here we report ac(4)C-seq, a chemical genomic method for the transcriptome-wide quantitative mapping of ac(4)C at single-nucleotide resolution. In human and yeast mRNAs, ac(4)C sites are not detected but can be induced-at a conserved sequence motif-via the ectopic overexpression of eukaryotic acetyltransferase complexes. By contrast, cross-evolutionary profiling revealed unprecedented levels of ac(4)C across hundreds of residues in rRNA, tRNA, non-coding RNA and mRNA from hyperthermophilic archaea. (AcC)-C-4 is markedly induced in response to increases in temperature, and acetyltransferase-deficient archaeal strains exhibit temperature-dependent growth defects. Visualization of wild-type and acetyltransferase-deficient archaeal ribosomes by cryo-electron microscopy provided structural insights into the temperature-dependent distribution of ac(4)C and its potential thermoadaptive role. Our studies quantitatively define the ac(4)C landscape, providing a technical and conceptual foundation for elucidating the role of this modification in biology and disease(4-6).


  
Noninvasive 2D and 3D Mapping of Root Zone Soil Moisture Through the Detection of Coarse Roots With Ground-Penetrating Radar 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (5)
作者:  Liu, X.;  Chen, J.;  Butnor, J. R.;  Qin, G.;  Cui, X.;  Fan, B.;  Lin, H.;  Guo, L.
收藏  |  浏览/下载:13/0  |  提交时间:2020/05/13
ecohydrology  in situ  near-surface geophysics  soil mapping  soil-plant-water relationships  subsoil  
A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by T-reg cells 期刊论文
NATURE, 2020
作者:  Ma, Xiyu;  Claus, Lucas A. N.;  Leslie, Michelle E.;  Tao, Kai;  Wu, Zhiping;  Liu, Jun;  Yu, Xiao;  Li, Bo;  Zhou, Jinggeng;  Savatin, Daniel V.;  Peng, Junmin;  Tyler, Brett M.;  Heese, Antje;  Russinova, Eugenia;  He, Ping;  Shan, Libo
收藏  |  浏览/下载:41/0  |  提交时间:2020/07/03

Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers(1). The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.5(2-7) contains a distal enhancer that is functional in CD4(+) regulatory T (T-reg) cells and required for T-reg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-kappa B to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3(+) T-reg cells, which are unable to control colitis in a cell-transfer model of the disease. In human T-reg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.


Shared synteny guides loss-of-function analysis of human enhancer homologues in mice, identifying a distal enhancer at the autoimmune and allergic disease risk locus at chromosome 11q13.5 whose function in regulatory T cells provides a mechanistic basis for its role in disease.


  
Heather Houser Chronicling the infowhelm 期刊论文
NATURE, 2020, 582 (7810) : 26-26
作者:  Ahlberg, Per
收藏  |  浏览/下载:0/0  |  提交时间:2020/07/03

From mapping coronavirus to recording extinctions, Heather Houser describes the intersection of art and data visualization.


From mapping coronavirus to recording extinctions, Heather Houser describes the intersection of art and data visualization.


  
Assessment of Climate Change Impacts on Reservoir Storage Reliability, Resilience, and Vulnerability Using a Multivariate Frequency Bias Correction Approach 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (2)
作者:  Ha Nguyen;  Mehrotra, Rajeshwar;  Sharma, Ashish
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
frequency-based bias correction  multivariate bias correction  quantile mapping  hydrological climate change impacts  reservoir storage  
Recurrent interactions in local cortical circuits 期刊论文
NATURE, 2020, 579 (7798) : 256-+
作者:  Liu, Yang;  Nguyen, Phong T.;  Wang, Xun;  Zhao, Yuting;  Meacham, Corbin E.;  Zou, Zhongju;  Bordieanu, Bogdan;  Johanns, Manuel;  Vertommen, Didier;  Wijshake, Tobias;  May, Herman;  Xiao, Guanghua;  Shoji-Kawata, Sanae;  Rider, Mark H.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Most cortical synapses are local and excitatory. Local recurrent circuits could implement amplification, allowing pattern completion and other computations(1-4). Cortical circuits contain subnetworks that consist of neurons with similar receptive fields and increased connectivity relative to the network average(5,6). Cortical neurons that encode different types of information are spatially intermingled and distributed over large brain volumes(5-7), and this complexity has hindered attempts to probe the function of these subnetworks by perturbing them individually(8). Here we use computational modelling, optical recordings and manipulations to probe the function of recurrent coupling in layer 2/3 of the mouse vibrissal somatosensory cortex during active tactile discrimination. A neural circuit model of layer 2/3 revealed that recurrent excitation enhances sensory signals by amplification, but only for subnetworks with increased connectivity. Model networks with high amplification were sensitive to damage: loss of a few members of the subnetwork degraded stimulus encoding. We tested this prediction by mapping neuronal selectivity(7) and photoablating(9,10) neurons with specific selectivity. Ablation of a small proportion of layer 2/3 neurons (10-20, less than 5% of the total) representing touch markedly reduced responses in the spared touch representation, but not in other representations. Ablations most strongly affected neurons with stimulus responses that were similar to those of the ablated population, which is also consistent with network models. Recurrence among cortical neurons with similar selectivity therefore drives input-specific amplification during behaviour.


Computational modelling, imaging and single-cell ablation in layer 2/3 of the mouse vibrissal somatosensory cortex reveals that recurrent activity in cortical neurons can drive input-specific amplification during behaviour.