GSTDTAP

浏览/检索结果: 共2条,第1-2条 帮助

已选(0)清除 条数/页:   排序方式:
AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment 期刊论文
NATURE, 2020, 580 (7805) : 647-+
作者:  Okada, Tatsuaki;  Fukuhara, Tetsuya;  Tanaka, Satoshi;  Taguchi, Makoto;  Arai, Takehiko;  Senshu, Hiroki;  Sakatani, Naoya;  Shimaki, Yuri;  Demura, Hirohide;  Ogawa, Yoshiko;  Suko, Kentaro;  Sekiguchi, Tomohiko;  Kouyama, Toru;  Takita, Jun;  Matsunaga, Tsuneo;  Imamura, Takeshi;  Wada, Takehiko;  Hasegawa, Sunao;  Helbert, Joern;  Mueller, Thomas G.;  Hagermann, Axel;  Biele, Jens;  Grott, Matthias;  Hamm, Maximilian;  Delbo, Marco;  Hirata, Naru;  Hirata, Naoyuki;  Yamamoto, Yukio;  Sugita, Seiji;  Namiki, Noriyuki;  Kitazato, Kohei;  Arakawa, Masahiko;  Tachibana, Shogo;  Ikeda, Hitoshi;  Ishiguro, Masateru;  Wada, Koji;  Honda, Chikatoshi;  Honda, Rie;  Ishihara, Yoshiaki;  Matsumoto, Koji;  Matsuoka, Moe;  Michikami, Tatsuhiro;  Miura, Akira;  Morota, Tomokatsu;  Noda, Hirotomo;  Noguchi, Rina;  Ogawa, Kazunori;  Shirai, Kei;  Tatsumi, Eri;  Yabuta, Hikaru;  Yokota, Yasuhiro;  Yamada, Manabu;  Abe, Masanao;  Hayakawa, Masahiko;  Iwata, Takahiro;  Ozaki, Masanobu;  Yano, Hajime;  Hosoda, Satoshi;  Mori, Osamu;  Sawada, Hirotaka;  Shimada, Takanobu;  Takeuchi, Hiroshi;  Tsukizaki, Ryudo;  Fujii, Atsushi;  Hirose, Chikako;  Kikuchi, Shota;  Mimasu, Yuya;  Ogawa, Naoko;  Ono, Go;  Takahashi, Tadateru;  Takei, Yuto;  Yamaguchi, Tomohiro;  Yoshikawa, Kent;  Terui, Fuyuto;  Saiki, Takanao;  Nakazawa, Satoru;  Yoshikawa, Makoto;  Watanabe, Seiichiro;  Tsuda, Yuichi
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/03

The sensing of DNA damage by the AIM2 inflammasome promotes the death of central nervous system cells and is required for normal brain development.


Neurodevelopment is characterized by rapid rates of neural cell proliferation and differentiation followed by massive cell death in which more than half of all recently generated brain cells are pruned back. Large amounts of DNA damage, cellular debris, and by-products of cellular stress are generated during these neurodevelopmental events, all of which can potentially activate immune signalling. How the immune response to this collateral damage influences brain maturation and function remains unknown. Here we show that the AIM2 inflammasome contributes to normal brain development and that disruption of this immune sensor of genotoxic stress leads to behavioural abnormalities. During infection, activation of the AIM2 inflammasome in response to double-stranded DNA damage triggers the production of cytokines as well as a gasdermin-D-mediated form of cell death known as pyroptosis(1-4). We observe pronounced AIM2 inflammasome activation in neurodevelopment and find that defects in this sensor of DNA damage result in anxiety-related behaviours in mice. Furthermore, we show that the AIM2 inflammasome contributes to central nervous system (CNS) homeostasis specifically through its regulation of gasdermin-D, and not via its involvement in the production of the cytokines IL-1 and/or IL-18. Consistent with a role for this sensor of genomic stress in the purging of genetically compromised CNS cells, we find that defective AIM2 inflammasome signalling results in decreased neural cell death both in response to DNA damage-inducing agents and during neurodevelopment. Moreover, mutations in AIM2 lead to excessive accumulation of DNA damage in neurons as well as an increase in the number of neurons that incorporate into the adult brain. Our findings identify the inflammasome as a crucial player in establishing a properly formed CNS through its role in the removal of genetically compromised cells.


  
Peripheral T cell expansion predicts tumour infiltration and clinical response 期刊论文
NATURE, 2020, 579 (7798) : 274-+
作者:  Yasuda, Sayaka;  Tsuchiya, Hikaru;  Kaiho, Ai;  Guo, Qiang;  Ikeuchi, Ken;  Endo, Akinori;  Arai, Naoko;  Ohtake, Fumiaki;  Murata, Shigeo;  Inada, Toshifumi;  Baumeister, Wolfgang;  Fernandez-Busnadiego, Ruben;  Tanaka, Keiji;  Saeki, Yasushi
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/03

Despite the resounding clinical success in cancer treatment of antibodies that block the interaction of PD1 with its ligand PDL1(1), the mechanisms involved remain unknown. A major limitation to understanding the origin and fate of T cells in tumour immunity is the lack of quantitative information on the distribution of individual clonotypes of T cells in patients with cancer. Here, by performing deep single-cell sequencing of RNA and T cell receptors in patients with different types of cancer, we survey the profiles of various populations of T cells and T cell receptors in tumours, normal adjacent tissue, and peripheral blood. We find clear evidence of clonotypic expansion of effector-like T cells not only within the tumour but also in normal adjacent tissue. Patients with gene signatures of such clonotypic expansion respond best to anti-PDL1 therapy. Notably, expanded clonotypes found in the tumour and normal adjacent tissue can also typically be detected in peripheral blood, which suggests a convenient approach to patient identification. Analyses of our data together with several external datasets suggest that intratumoural T cells, especially in responsive patients, are replenished with fresh, non-exhausted replacement cells from sites outside the tumour, suggesting continued activity of the cancer immunity cycle in these patients, the acceleration of which may be associated with clinical response.