GSTDTAP

浏览/检索结果: 共2条,第1-2条 帮助

已选(0)清除 条数/页:   排序方式:
Inborn errors of type I IFN immunity in patients with life-threatening COVID-19 期刊论文
Science, 2020
作者:  Qian Zhang;  Paul Bastard;  Zhiyong Liu;  Jérémie Le Pen;  Marcela Moncada-Velez;  Jie Chen;  Masato Ogishi;  Ira K. D. Sabli;  Stephanie Hodeib;  Cecilia Korol;  Jérémie Rosain;  Kaya Bilguvar;  Junqiang Ye;  Alexandre Bolze;  Benedetta Bigio;  Rui Yang;  Andrés Augusto Arias;  Qinhua Zhou;  Yu Zhang;  Fanny Onodi;  Sarantis Korniotis;  Léa Karpf;  Quentin Philippot;  Marwa Chbihi;  Lucie Bonnet-Madin;  Karim Dorgham;  Nikaïa Smith;  William M. Schneider;  Brandon S. Razooky;  Hans-Heinrich Hoffmann;  Eleftherios Michailidis;  Leen Moens;  Ji Eun Han;  Lazaro Lorenzo;  Lucy Bizien;  Philip Meade;  Anna-Lena Neehus;  Aileen Camille Ugurbil;  Aurélien Corneau;  Gaspard Kerner;  Peng Zhang;  Franck Rapaport;  Yoann Seeleuthner;  Jeremy Manry;  Cecile Masson;  Yohann Schmitt;  Agatha Schlüter;  Tom Le Voyer;  Taushif Khan;  Juan Li;  Jacques Fellay;  Lucie Roussel;  Mohammad Shahrooei;  Mohammed F. Alosaimi;  Davood Mansouri;  Haya Al-Saud;  Fahd Al-Mulla;  Feras Almourfi;  Saleh Zaid Al-Muhsen;  Fahad Alsohime;  Saeed Al Turki;  Rana Hasanato;  Diederik van de Beek;  Andrea Biondi;  Laura Rachele Bettini;  Mariella D’Angio’;  Paolo Bonfanti;  Luisa Imberti;  Alessandra Sottini;  Simone Paghera;  Eugenia Quiros-Roldan;  Camillo Rossi;  Andrew J. Oler;  Miranda F. Tompkins;  Camille Alba;  Isabelle Vandernoot;  Jean-Christophe Goffard;  Guillaume Smits;  Isabelle Migeotte;  Filomeen Haerynck;  Pere Soler-Palacin;  Andrea Martin-Nalda;  Roger Colobran;  Pierre-Emmanuel Morange;  Sevgi Keles;  Fatma Çölkesen;  Tayfun Ozcelik;  Kadriye Kart Yasar;  Sevtap Senoglu;  Şemsi Nur Karabela;  Carlos Rodríguez-Gallego;  Giuseppe Novelli;  Sami Hraiech;  Yacine Tandjaoui-Lambiotte;  Xavier Duval;  Cédric Laouénan;  COVID-STORM Clinicians†;  COVID Clinicians†;  Imagine COVID Group†;  French COVID Cohort Study Group†;  CoV-Contact Cohort†;  Amsterdam UMC Covid-19 Biobank†;  COVID Human Genetic Effort†;  NIAID-USUHS/TAGC COVID Immunity Group†;  Andrew L. Snow;  Clifton L. Dalgard;  Joshua D. Milner;  Donald C. Vinh;  Trine H. Mogensen;  Nico Marr;  András N. Spaan;  Bertrand Boisson;  Stéphanie Boisson-Dupuis;  Jacinta Bustamante;  Anne Puel;  Michael J. Ciancanelli;  Isabelle Meyts;  Tom Maniatis;  Vassili Soumelis;  Ali Amara;  Michel Nussenzweig;  Adolfo García-Sastre;  Florian Krammer;  Aurora Pujol;  Darragh Duffy;  Richard P. Lifton;  Shen-Ying Zhang;  Guy Gorochov;  Vivien Béziat;  Emmanuelle Jouanguy;  Vanessa Sancho-Shimizu;  Charles M. Rice;  Laurent Abel;  Luigi D. Notarangelo;  Aurélie Cobat;  Helen C. Su;  Jean-Laurent Casanova
收藏  |  浏览/下载:51/0  |  提交时间:2020/10/26
Video-based AI for beat-to-beat assessment of cardiac function 期刊论文
NATURE, 2020, 580 (7802) : 252-+
作者:  Pleguezuelos-Manzano, Cayetano;  Puschhof, Jens;  Huber, Axel Rosendahl;  van Hoeck, Arne;  Wood, Henry M.;  Nomburg, Jason;  Gurjao, Carino;  Manders, Freek;  Dalmasso, Guillaume;  Stege, Paul B.;  Paganelli, Fernanda L.;  Geurts, Maarten H.;  Beumer, Joep;  Mizutani, Tomohiro;  Miao, Yi;  van der Linden, Reinier;  van der Elst, Stefan;  Garcia, K. Christopher;  Top, Janetta;  Willems, Rob J. L.;  Giannakis, Marios;  Bonnet, Richard;  Quirke, Phil;  Meyerson, Matthew;  Cuppen, Edwin;  van Boxtel, Ruben;  Clevers, Hans
收藏  |  浏览/下载:136/0  |  提交时间:2020/07/03

A video-based deep learning algorithm-EchoNet-Dynamic-accurately identifies subtle changes in ejection fraction and classifies heart failure with reduced ejection fraction using information from multiple cardiac cycles.


Accurate assessment of cardiac function is crucial for the diagnosis of cardiovascular disease(1), screening for cardiotoxicity(2) and decisions regarding the clinical management of patients with a critical illness(3). However, human assessment of cardiac function focuses on a limited sampling of cardiac cycles and has considerable inter-observer variability despite years of training(4,5). Here, to overcome this challenge, we present a video-based deep learning algorithm-EchoNet-Dynamic-that surpasses the performance of human experts in the critical tasks of segmenting the left ventricle, estimating ejection fraction and assessing cardiomyopathy. Trained on echocardiogram videos, our model accurately segments the left ventricle with a Dice similarity coefficient of 0.92, predicts ejection fraction with a mean absolute error of 4.1% and reliably classifies heart failure with reduced ejection fraction (area under the curve of 0.97). In an external dataset from another healthcare system, EchoNet-Dynamic predicts the ejection fraction with a mean absolute error of 6.0% and classifies heart failure with reduced ejection fraction with an area under the curve of 0.96. Prospective evaluation with repeated human measurements confirms that the model has variance that is comparable to or less than that of human experts. By leveraging information across multiple cardiac cycles, our model can rapidly identify subtle changes in ejection fraction, is more reproducible than human evaluation and lays the foundation for precise diagnosis of cardiovascular disease in real time. As a resource to promote further innovation, we also make publicly available a large dataset of 10,030 annotated echocardiogram videos.