GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
A Galactic-scale gas wave in the solar neighbourhood 期刊论文
NATURE, 2020, 578 (7794) : 237-+
作者:  Alves, Joao;  Zucker, Catherine;  Goodman, Alyssa A.;  Speagle, Joshua S.;  Meingast, Stefan;  Robitaille, Thomas;  Finkbeiner, Douglas P.;  Schlafly, Edward F.;  Green, Gregory M.
收藏  |  浏览/下载:35/0  |  提交时间:2020/07/03

The three-dimensional structure of all cloud complexes in the solar neighbourhood is revealed, showing a narrow and coherent 2.7-kpc arrangement of dense gas, in disagreement with the Gould Belt model.


For the past 150 years, the prevailing view of the local interstellar medium has been based on a peculiarity known as the Gould Belt(1-4), an expanding ring of young stars, gas and dust, tilted about 20 degrees to the Galactic plane. However, the physical relationship between local gas clouds has remained unknown because the accuracy in distance measurements to such clouds is of the same order as, or larger than, their sizes(5-7). With the advent of large photometric surveys(8) and the astrometric survey(9), this situation has changed(10). Here we reveal the three-dimensional structure of all local cloud complexes. We find a narrow and coherent 2.7-kiloparsec arrangement of dense gas in the solar neighbourhood that contains many of the clouds thought to be associated with the Gould Belt. This finding is inconsistent with the notion that these clouds are part of a ring, bringing the Gould Belt model into question. The structure comprises the majority of nearby star-forming regions, has an aspect ratio of about 1:20 and contains about three million solar masses of gas. Remarkably, this structure appears to be undulating, and its three-dimensional shape is well described by a damped sinusoidal wave on the plane of the Milky Way with an average period of about 2 kiloparsecs and a maximum amplitude of about 160 parsecs.


  
An engineered PET depolymerase to break down and recycle plastic bottles 期刊论文
NATURE, 2020, 580 (7802) : 216-+
作者:  Zhao, Evan Wenbo;  Liu, Tao;  Jonsson, Erlendur;  Lee, Jeongjae;  Temprano, Israel;  Jethwa, Rajesh B.;  Wang, Anqi;  Smith, Holly;  Carretero-Gonzalez, Javier;  Song, Qilei;  Grey, Clare P.
收藏  |  浏览/下载:104/0  |  提交时间:2020/07/03

Present estimates suggest that of the 359 million tons of plastics produced annually worldwide(1), 150-200 million tons accumulate in landfill or in the natural environment(2). Poly(ethylene terephthalate) (PET) is the most abundant polyester plastic, with almost 70 million tons manufactured annually worldwide for use in textiles and packaging(3). The main recycling process for PET, via thermomechanical means, results in a loss of mechanical properties(4). Consequently, de novo synthesis is preferred and PET waste continues to accumulate. With a high ratio of aromatic terephthalate units-which reduce chain mobility-PET is a polyester that is extremely difficult to hydrolyse(5). Several PET hydrolase enzymes have been reported, but show limited productivity(6,7). Here we describe an improved PET hydrolase that ultimately achieves, over 10 hours, a minimum of 90 per cent PET depolymerization into monomers, with a productivity of 16.7 grams of terephthalate per litre per hour (200 grams per kilogram of PET suspension, with an enzyme concentration of 3 milligrams per gram of PET). This highly efficient, optimized enzyme outperforms all PET hydrolases reported so far, including an enzyme(8,9) from the bacterium Ideonella sakaiensis strain 201-F6 (even assisted by a secondary enzyme(10)) and related improved variants(11-14) that have attracted recent interest. We also show that biologically recycled PET exhibiting the same properties as petrochemical PET can be produced from enzymatically depolymerized PET waste, before being processed into bottles, thereby contributing towards the concept of a circular PET economy.


Computer-aided engineering produces improvements to an enzyme that breaks down poly(ethylene terephthalate) (PET) into its constituent monomers, which are used to synthesize PET of near-petrochemical grade that can be further processed into bottles.


  
The competition between coastal trace metal fluxes and oceanic mixing from the Be-10/Be-9 ratio: Implications for sedimentary records 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (16)
作者:  Wittmann, H.;  von Blanckenburg, F.;  Mohtadi, M.;  Christl, M.;  Bernhardt, A.
收藏  |  浏览/下载:10/0  |  提交时间:2019/04/09
meteoric Be-10  Be-9 ratio  coastal trace metals  oceanic mixing  marine sedimentary records  paleosediment fluxes  boundary exchange