GSTDTAP

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
Operation of a silicon quantum processor unit cell above one kelvin 期刊论文
NATURE, 2020, 580 (7803) : 350-+
作者:  Han, Kyuho;  Pierce, Sarah E.;  Li, Amy;  Spees, Kaitlyn;  Anderson, Grace R.;  Seoane, Jose A.;  Lo, Yuan-Hung;  Dubreuil, Michael;  Olivas, Micah;  Kamber, Roarke A.;  Wainberg, Michael;  Kostyrko, Kaja;  Kelly, Marcus R.;  Yousefi, Maryam;  Simpkins, Scott W.;  Yao, David
收藏  |  浏览/下载:34/0  |  提交时间:2020/07/03

Quantum computers are expected to outperform conventional computers in several important applications, from molecular simulation to search algorithms, once they can be scaled up to large numbers-typically millions-of quantum bits (qubits)(1-3). For most solid-state qubit technologies-for example, those using superconducting circuits or semiconductor spins-scaling poses a considerable challenge because every additional qubit increases the heat generated, whereas the cooling power of dilution refrigerators is severely limited at their operating temperature (less than 100 millikelvin)(4-6). Here we demonstrate the operation of a scalable silicon quantum processor unit cell comprising two qubits confined to quantum dots at about 1.5 kelvin. We achieve this by isolating the quantum dots from the electron reservoir, and then initializing and reading the qubits solely via tunnelling of electrons between the two quantum dots(7-9). We coherently control the qubits using electrically driven spin resonance(10,11) in isotopically enriched silicon(12 28)Si, attaining single-qubit gate fidelities of 98.6 per cent and a coherence time of 2 microseconds during '  hot'  operation, comparable to those of spin qubits in natural silicon at millikelvin temperatures(13-16). Furthermore, we show that the unit cell can be operated at magnetic fields as low as 0.1 tesla, corresponding to a qubit control frequency of 3.5 gigahertz, where the qubit energy is well below the thermal energy. The unit cell constitutes the core building block of a full-scale silicon quantum computer and satisfies layout constraints required by error-correction architectures(8),(17). Our work indicates that a spin-based quantum computer could be operated at increased temperatures in a simple pumped He-4 system (which provides cooling power orders of magnitude higher than that of dilution refrigerators), thus potentially enabling the integration of classical control electronics with the qubit array(18,19).


  
Passive survivability of buildings under changing urban climates across eight US cities 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (7)
作者:  Baniassadi, Amir;  Sailor, David J.;  Krayenhoff, E. Scott;  Broadbent, Ashley M.;  Georgescu, Matei
收藏  |  浏览/下载:17/0  |  提交时间:2019/11/27
climate change  urban warming  indoor thermal comfort  indoor heat exposure  building energy codes  building energy efficiency  regional climate simulation  
Evaluation of satellite-derived building height extraction by CFD simulations: A case study of neighborhood-scale ventilation in Hong Kong 期刊论文
LANDSCAPE AND URBAN PLANNING, 2018, 170: 90-102
作者:  Wang, Weiwen;  Xu, Yong;  Ng, Edward;  Raasch, Siegfried
收藏  |  浏览/下载:28/0  |  提交时间:2019/04/09
Building height extraction  Urban ventilation  Large-eddy simulation  High-density urban area  
The Role of Logic Modeling in a Collaborative and Iterative Research Process: Lessons from Research and Analysis Conducted with the Federal Voting Assistance Program 科技报告
来源:Rand Corporation. 出版年: 2016
作者:  Victoria A. Greenfield;  Shoshana R. Shelton;  Edward Balkovich
收藏  |  浏览/下载:10/0  |  提交时间:2019/04/05
Capacity Building  Change Management  Modeling and Simulation  Organizational Leadership  
Leco. Thermo-active Ceilings & Free Cooling. Using free cooling in combination with thermo-active ceilings for integrated heating and cooling 科技报告
来源:Center for International Climate and Environmental Research-Oslo (CICERO). 出版年: 2010
作者:  Murphy, Mark Allen
收藏  |  浏览/下载:10/0  |  提交时间:2019/04/05
Energy  Termo-active elements  Low-energy cooling  Cooled ceilings  Free cooling  Thermal mass  Building simulation  Energibruk  Kontorbygg  VDP::Technology: 500