GSTDTAP

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
Microbiota-targeted maternal antibodies protect neonates from enteric infection 期刊论文
NATURE, 2020, 577 (7791) : 543-+
作者:  Zheng, Wen;  Zhao, Wenjing;  Wu, Meng;  Song, Xinyang;  Caro, Florence;  Sun, Ximei;  Gazzaniga, Francesca;  Stefanetti, Giuseppe;  Oh, Sungwhan;  Mekalanos, John J.;  Kasper, Dennis L.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Although maternal antibodies protect newborn babies from infection(1,2), little is known about how protective antibodies are induced without prior pathogen exposure. Here we show that neonatal mice that lack the capacity to produce IgG are protected from infection with the enteric pathogen enterotoxigenic Escherichia coli by maternal natural IgG antibodies against the maternal microbiota when antibodies are delivered either across the placenta or through breast milk. By challenging pups that were fostered by either maternal antibody-sufficient or antibody-deficient dams, we found that IgG derived from breast milk was crucial for protection against mucosal disease induced by enterotoxigenic E. coli. IgG also provides protection against systemic infection by E. coli. Pups used the neonatal Fc receptor to transfer IgG from milk into serum. The maternal commensal microbiota can induce antibodies that recognize antigens expressed by enterotoxigenic E. coli and other Enterobacteriaceae species. Induction of maternal antibodies against a commensal Pantoea species confers protection against enterotoxigenic E. coli in pups. This role of the microbiota in eliciting protective antibodies to a specific neonatal pathogen represents an important host defence mechanism against infection in neonates.


Neonatal mice are protected against infection with the enteric pathogen enterotoxigenic Escherichia coli by maternally derived natural antibodies as well as by maternal commensal microbiota that induce antibodies that recognize antigens expressed by Enterobacteriaceae.


  
Li metal deposition and stripping in a solid-state battery via Coble creep 期刊论文
NATURE, 2020, 578 (7794) : 251-+
作者:  Helmrich, S.;  Arias, A.;  Lochead, G.;  Wintermantel, T. M.;  Buchhold, M.;  Diehl, S.;  Whitlock, S.
收藏  |  浏览/下载:56/0  |  提交时间:2020/07/03

Solid-state lithium metal batteries require accommodation of electrochemically generated mechanical stress inside the lithium: this stress can be(1,2) up to 1 gigapascal for an overpotential of 135 millivolts. Maintaining the mechanical and electrochemical stability of the solid structure despite physical contact with moving corrosive lithium metal is a demanding requirement. Using in situ transmission electron microscopy, we investigated the deposition and stripping of metallic lithium or sodium held within a large number of parallel hollow tubules made of a mixed ionic-electronic conductor (MIEC). Here we show that these alkali metals-as single crystals-can grow out of and retract inside the tubules via mainly diffusional Coble creep along the MIEC/metal phase boundary. Unlike solid electrolytes, many MIECs are electrochemically stable in contact with lithium (that is, there is a direct tie-line to metallic lithium on the equilibrium phase diagram), so this Coble creep mechanism can effectively relieve stress, maintain electronic and ionic contacts, eliminate solid-electrolyte interphase debris, and allow the reversible deposition/stripping of lithium across a distance of 10 micrometres for 100 cycles. A centimetre-wide full cell-consisting of approximately 10(10) MIEC cylinders/solid electrolyte/LiFePO4-shows a high capacity of about 164 milliampere hours per gram of LiFePO4, and almost no degradation for over 50 cycles, starting with a 1x excess of Li. Modelling shows that the design is insensitive to MIEC material choice with channels about 100 nanometres wide and 10-100 micrometres deep. The behaviour of lithium metal within the MIEC channels suggests that the chemical and mechanical stability issues with the metal-electrolyte interface in solid-state lithium metal batteries can be overcome using this architecture.


By containing lithium metal within oriented tubes of a mixed ionic-electronic conductor, a 3D anode for lithium metal batteries is produced that overcomes chemomechanical stability issues at the electrolyte interface.


  
Capacity adequacy in power markets facing energy transition: A comparison of scarcity pricing and capacity mechanism 期刊论文
ENERGY POLICY, 2017, 103
作者:  Petitet, Marie;  Finon, Dominique;  Janssen, Tanguy
收藏  |  浏览/下载:5/0  |  提交时间:2019/04/09
Capacity mechanism  Security of supply  Energy transition  Mature market  System dynamics  
Enhanced operational reserve as a tool for development of optimal energy mix 期刊论文
ENERGY POLICY, 2017, 102
作者:  Wierzbowski, Michal;  Filipiak, Izabela
收藏  |  浏览/下载:0/0  |  提交时间:2019/04/09
Capacity mechanism  Missing money  Missing capacity  Resource adequacy  Power reserves  
Enterprise investment, local government intervention and coal overcapacity: The case of China 期刊论文
ENERGY POLICY, 2017, 101
作者:  Zhang, Yanfang;  Zhang, Ming;  Liu, Yue;  Nie, Rui
收藏  |  浏览/下载:7/0  |  提交时间:2019/04/09
Coal overcapacity  Capacity investment  Formation mechanism  Local government  Three-stage game model