GSTDTAP

浏览/检索结果: 共16条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
科学家在木卫二表面发现碳源 快报文章
地球科学快报,2023年第19期
作者:  刘文浩
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:505/0  |  提交时间:2023/10/10
Europa  source of carbon  
研究发现从伐木中恢复的森林是碳源 快报文章
气候变化快报,2023年第3期
作者:  裴惠娟
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:723/0  |  提交时间:2023/02/05
Carbon Source  Tropical Forests  Logging  
Nature:亚马逊地区正在由碳汇向碳源转变 快报文章
资源环境快报,2021年第14期
作者:  吴秀平
Microsoft Word(21Kb)  |  收藏  |  浏览/下载:477/0  |  提交时间:2021/07/30
Amazonia  carbon source  deforestation  climate change  
到2050年森林可能从“碳汇”转变为“碳源” 快报文章
资源环境快报,2021年第2期
作者:  裴惠娟
Microsoft Word(31Kb)  |  收藏  |  浏览/下载:516/0  |  提交时间:2021/01/30
Terrestrial Biosphere  Temperature Tipping Point  Carbon Sink  Carbon Source  
气候变化通过致使内陆湖萎缩带来生态、政治和经济危机 快报文章
气候变化快报,2021年第2期
作者:  董利苹
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:418/0  |  提交时间:2021/01/20
Peatland  Climate Change  Carbon sink  Carbon source  
保护泥炭地对减缓气候变化至关重要 快报文章
气候变化快报,2021年第1期
作者:  裴惠娟
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:480/0  |  提交时间:2021/01/04
Peatland  Climate Change  Carbon sink  Carbon source  
Temporal Characteristics and Potential Sources of Black Carbon in Megacity Shanghai, China 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (9)
作者:  Wei, C.;  Wang, M. H.;  Fu, Q. Y.;  Dai, C.;  Huang, R.;  Bao, Q.
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/02
black carbon  temporal variation  source apportionment  meteorological condition  back trajectory  
Chemical and source characterization of PM2.5 in summertime in severely polluted Lahore, Pakistan 期刊论文
ATMOSPHERIC RESEARCH, 2020, 234
作者:  Ahmad, Mushtaq;  Cheng, Siming;  Yu, Qing;  Qin, Weihua;  Zhang, Yuepeng;  Chen, Jing
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/02
South Asia  Air pollution  Black carbon  CWT  Source apportionment  
Gram-scale bottom-up flash graphene synthesis 期刊论文
NATURE, 2020, 577 (7792) : 647-651
作者:  Long, Haizhen;  Zhang, Liwei;  Lv, Mengjie;  Wen, Zengqi;  Zhang, Wenhao;  Chen, Xiulan;  Zhang, Peitao;  Li, Tongqing;  Chang, Luyuan;  Jin, Caiwei;  Wu, Guozhao;  Wang, Xi;  Yang, Fuquan;  Pei, Jianfeng;  Chen, Ping;  Margueron, Raphael;  Deng, Haiteng;  Zhu, Mingzhao;  Li, Guohong
收藏  |  浏览/下载:39/0  |  提交时间:2020/07/03

Most bulk-scale graphene is produced by a top-down approach, exfoliating graphite, which often requires large amounts of solvent with high-energy mixing, shearing, sonication or electrochemical treatment(1-3). Although chemical oxidation of graphite to graphene oxide promotes exfoliation, it requires harsh oxidants and leaves the graphene with a defective perforated structure after the subsequent reduction step(3,4). Bottom-up synthesis of high-quality graphene is often restricted to ultrasmall amounts if performed by chemical vapour deposition or advanced synthetic organic methods, or it provides a defect-ridden structure if carried out in bulk solution(4-6). Here we show that flash Joule heating of inexpensive carbon sources-such as coal, petroleum coke, biochar, carbon black, discarded food, rubber tyres and mixed plastic waste-can afford gram-scale quantities of graphene in less than one second. The product, named flash graphene (FG) after the process used to produce it, shows turbostratic arrangement (that is, little order) between the stacked graphene layers. FG synthesis uses no furnace and no solvents or reactive gases. Yields depend on the carbon content of the source  when using a high-carbon source, such as carbon black, anthracitic coal or calcined coke, yields can range from 80 to 90 per cent with carbon purity greater than 99 per cent. No purification steps are necessary. Raman spectroscopy analysis shows a low-intensity or absent D band for FG, indicating that FG has among the lowest defect concentrations reported so far for graphene, and confirms the turbostratic stacking of FG, which is clearly distinguished from turbostratic graphite. The disordered orientation of FG layers facilitates its rapid exfoliation upon mixing during composite formation. The electric energy cost for FG synthesis is only about 7.2 kilojoules per gram, which could render FG suitable for use in bulk composites of plastic, metals, plywood, concrete and other building materials.


Flash Joule heating of inexpensive carbon sources is used to produce gram-scale quantities of high-quality graphene in under a second, without the need for a furnace, solvents or reactive gases.


  
Characteristics and sources of organic carbon in coastal and marine atmospheric particulates over East China 期刊论文
ATMOSPHERIC RESEARCH, 2019, 228: 281-291
作者:  Ding, Xue;  Qi, Jianhua;  Meng, Xiangbin
收藏  |  浏览/下载:21/0  |  提交时间:2019/11/27
Aerosols  Organic Carbon  WSOC  Dust  Source