GSTDTAP

浏览/检索结果: 共7条,第1-7条 帮助

已选(0)清除 条数/页:   排序方式:
Senolytic CAR T cells reverse senescence-associated pathologies 期刊论文
NATURE, 2020, 583 (7814) : 127-+
作者:  Cortez, Jessica T.;  Montauti, Elena;  Shifrut, Eric;  Gatchalian, Jovylyn;  Zhang, Yusi;  Shaked, Oren;  Xu, Yuanming;  Roth, Theodore L.;  Simeonov, Dimitre R.;  Zhang, Yana;  Chen, Siqi;  Li, Zhongmei;  Woo, Jonathan M.;  Ho, Josephine;  Vogel, Ian A.
收藏  |  浏览/下载:67/0  |  提交时间:2020/07/03

Cellular senescence is characterized by stable cell-cycle arrest and a secretory program that modulates the tissue microenvironment(1,2). Physiologically, senescence serves as a tumour-suppressive mechanism that prevents the expansion of premalignant cells(3,4)and has a beneficial role in wound-healing responses(5,6). Pathologically, the aberrant accumulation of senescent cells generates an inflammatory milieu that leads to chronic tissue damage and contributes to diseases such as liver and lung fibrosis, atherosclerosis, diabetes and osteoarthritis(1,7). Accordingly, eliminating senescent cells from damaged tissues in mice ameliorates the symptoms of these pathologies and even promotes longevity(1,2,8-10). Here we test the therapeutic concept that chimeric antigen receptor (CAR) T cells that target senescent cells can be effective senolytic agents. We identify the urokinase-type plasminogen activator receptor (uPAR)(11)as a cell-surface protein that is broadly induced during senescence and show that uPAR-specific CAR T cells efficiently ablate senescent cells in vitro and in vivo. CAR T cells that target uPAR extend the survival of mice with lung adenocarcinoma that are treated with a senescence-inducing combination of drugs, and restore tissue homeostasis in mice in which liver fibrosis is induced chemically or by diet. These results establish the therapeutic potential of senolytic CAR T cells for senescence-associated diseases.


Chimeric antigen receptor (CAR) T cells targeting uPAR, a cell-surface protein that is upregulated on senescent cells, eliminate senescent cells in vitro and in vivo and reduce liver fibrosis in mice.


  
Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis 期刊论文
NATURE, 2020, 579 (7798) : 279-+
作者:  Liu, Xiaomeng;  Gao, Hongyan;  Ward, Joy E.;  Liu, Xiaorong;  Yin, Bing;  Fu, Tianda;  Chen, Jianhan;  Lovley, Derek R.;  Yao, Jun
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Although it is well-established that reductions in the ratio of insulin to glucagon in the portal vein have a major role in the dysregulation of hepatic glucose metabolism in type-2 diabetes(1-3), the mechanisms by which glucagon affects hepatic glucose production and mitochondrial oxidation are poorly understood. Here we show that glucagon stimulates hepatic gluconeogenesis by increasing the activity of hepatic adipose triglyceride lipase, intrahepatic lipolysis, hepatic acetyl-CoA content and pyruvate carboxylase flux, while also increasing mitochondrial fat oxidation-all of which are mediated by stimulation of the inositol triphosphate receptor 1 (INSP3R1). In rats and mice, chronic physiological increases in plasma glucagon concentrations increased mitochondrial oxidation of fat in the liver and reversed diet-induced hepatic steatosis and insulin resistance. However, these effects of chronic glucagon treatment-reversing hepatic steatosis and glucose intolerance-were abrogated in Insp3r1 (also known as Itpr1)-knockout mice. These results provide insights into glucagon biology and suggest that INSP3R1 may represent a target for therapies that aim to reverse nonalcoholic fatty liver disease and type-2 diabetes.


  
Sex-specific adipose tissue imprinting of regulatory T cells 期刊论文
NATURE, 2020, 579 (7800) : 581-+
作者:  Qureshi, Abdul Aziz;  Suades, Albert;  Matsuoka, Rei;  Brock, Joseph;  McComas, Sarah E.;  Nji, Emmanuel;  Orellana, Laura;  Claesson, Magnus;  Delemotte, Lucie;  Drew, David
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Adipose tissue is an energy store and a dynamic endocrine organ(1,2). In particular, visceral adipose tissue (VAT) is critical for the regulation of systemic metabolism(3,4). Impaired VAT function-for example, in obesity-is associated with insulin resistance and type 2 diabetes(5,6). Regulatory T (T-reg) cells that express the transcription factor FOXP3 are critical for limiting immune responses and suppressing tissue inflammation, including in the VAT(7-9). Here we uncover pronounced sexual dimorphism in T-reg cells in the VAT. Male VAT was enriched for T-reg cells compared with female VAT, and T-reg cells from male VAT were markedly different from their female counterparts in phenotype, transcriptional landscape and chromatin accessibility. Heightened inflammation in the male VAT facilitated the recruitment of T-reg cells via the CCL2-CCR2 axis. Androgen regulated the differentiation of a unique IL-33-producing stromal cell population specific to the male VAT, which paralleled the local expansion of T-reg cells. Sex hormones also regulated VAT inflammation, which shaped the transcriptional landscape of VAT-resident T-reg cells in a BLIMP1 transcription factor-dependent manner. Overall, we find that sex-specific differences in T-reg cells from VAT are determined by the tissue niche in a sex-hormone-dependent manner to limit adipose tissue inflammation.


Visceral adipose tissue contains populations of regulatory T cells that exhibit sexual dimorphism, determined by the surrounding niche, and differ between male and female mice in terms of cell number, phenotype, transcriptional landscape and chromatin accessibility.


  
Activation of the GLP-1 receptor by a non-peptidic agonist 期刊论文
NATURE, 2020, 577 (7790) : 432-+
作者:  Zhao, Peishen;  Liang, Yi-Lynn;  Belousoff, Matthew J.;  Deganutti, Giuseppe;  Fletcher, Madeleine M.;  Willard, Francis S.;  Bell, Michael G.;  Christe, Michael E.;  Sloop, Kyle W.;  Inoue, Asuka;  Truong, Tin T.;  Clydesdale, Lachlan;  Furness, Sebastian G. B.;  Christopoulos, Arthur;  Wang, Ming-Wei;  Miller, Laurence J.;  Reynolds, Christopher A.;  Danev, Radostin;  Sexton, Patrick M.;  Wootten, Denise
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Class B G-protein-coupled receptors are major targets for the treatment of chronic diseases, including diabetes and obesity(1). Structures of active receptors reveal peptide agonists engage deep within the receptor core, leading to an outward movement of extracellular loop 3 and the tops of transmembrane helices 6 and 7, an inward movement of transmembrane helix 1, reorganization of extracellular loop 2 and outward movement of the intracellular side of transmembrane helix 6, resulting in G-protein interaction and activation(2-6). Here we solved the structure of a non-peptide agonist, TT-OAD2, bound to the glucagon-like peptide-1 (GLP-1) receptor. Our structure identified an unpredicted non-peptide agonist-binding pocket in which reorganization of extracellular loop 3 and transmembrane helices 6 and 7 manifests independently of direct ligand interaction within the deep transmembrane domain pocket. TT-OAD2 exhibits biased agonism, and kinetics of G-protein activation and signalling that are distinct from peptide agonists. Within the structure, TT-OAD2 protrudes beyond the receptor core to interact with the lipid or detergent, providing an explanation for the distinct activation kinetics that may contribute to the clinical efficacy of this compound series. This work alters our understanding of the events that drive the activation of class B receptors.


  
The UK's largest UK University Fair for International Students 会议
London, United Kingdom, 会议类型: Exhibition, 2017