GSTDTAP

浏览/检索结果: 共16条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
新型广域成像卫星有望开启地球观测新时代 快报文章
地球科学快报,2025年第13期
作者:  刘文浩
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:426/0  |  提交时间:2025/07/10
unveils wide-area imaging satellite  Earth Observation  
美英研究发现气候变化将降低近地轨道卫星承载能力 快报文章
气候变化快报,2025年第7期
作者:  廖琴
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:428/0  |  提交时间:2025/04/05
Greenhouse Gases  Low Earth Orbit  Satellite Carrying Capacity  
国际研究揭示温室气体对近地轨道卫星承载能力的影响 快报文章
气候变化快报,2025年第6期
作者:  董利苹 杜海霞
Microsoft Word(13Kb)  |  收藏  |  浏览/下载:404/0  |  提交时间:2025/03/20
Greenhouse Gas  Satellite  Carrying Capacity  Low Earth Orbit  
ESA首次实现近地轨道卫星与地面5G直连 快报文章
地球科学快报,2025年第2期
作者:  刘文浩
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:528/0  |  提交时间:2025/01/23
5G connection  low Earth orbit satellite  ESA  
英国航天局拨款900万英镑用于加强卫星大气监测能力 快报文章
气候变化快报,2024年第11期
作者:  秦冰雪
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:1955/1  |  提交时间:2024/06/05
Satellite Instrument  Climate  Earth Observation  
NASA正式公开发布最新地球观测卫星PACE的科学数据 快报文章
地球科学快报,2024年第9期
作者:  张树良
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:467/1  |  提交时间:2024/05/10
PACE  Earth-observing satellite  science data  
新型卫星能够实现从太空测量地球降水 快报文章
地球科学快报,2024年第4期
作者:  王立伟
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:749/0  |  提交时间:2024/02/25
satellite  Earth precipitation  
加拿大发布卫星对地观测战略 快报文章
地球科学快报,2022年第03期
作者:  刘学
Microsoft Word(19Kb)  |  收藏  |  浏览/下载:710/1  |  提交时间:2022/02/10
Canada  Satellite earth observation  
新的NISAR卫星旨在发现潜在的自然灾害 快报文章
地球科学快报,2021年第7期
作者:  王立伟
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:523/0  |  提交时间:2021/04/09
Earth satellite  track  disasters  
Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018 期刊论文
NATURE, 2020, 581 (7808) : 294-+
作者:  Ibrahim, Nizar;  Maganuco, Simone;  Dal Sasso, Cristiano;  Fabbri, Matteo;  Auditore, Marco;  Bindellini, Gabriele;  Martill, David M.;  Zouhri, Samir;  Mattarelli, Diego A.;  Unwin, David M.;  Wiemann, Jasmina;  Bonadonna, Davide;  Amane, Ayoub;  Jakubczak, Juliana;  Joger, Ulrich;  Lauder, George V.;  Pierce, Stephanie E.
收藏  |  浏览/下载:35/0  |  提交时间:2020/05/25

Warming surface temperatures have driven a substantial reduction in the extent and duration of Northern Hemisphere snow cover(1-3). These changes in snow cover affect Earth'  s climate system via the surface energy budget, and influence freshwater resources across a large proportion of the Northern Hemisphere(4-6). In contrast to snow extent, reliable quantitative knowledge on seasonal snow mass and its trend is lacking(7-9). Here we use the new GlobSnow 3.0 dataset to show that the 1980-2018 annual maximum snow mass in the Northern Hemisphere was, on average, 3,062 +/- 35 billion tonnes (gigatonnes). Our quantification is for March (the month that most closely corresponds to peak snow mass), covers non-alpine regions above 40 degrees N and, crucially, includes a bias correction based on in-field snow observations. We compare our GlobSnow 3.0 estimates with three independent estimates of snow mass, each with and without the bias correction. Across the four datasets, the bias correction decreased the range from 2,433-3,380 gigatonnes (mean 2,867) to 2,846-3,062 gigatonnes (mean 2,938)-a reduction in uncertainty from 33% to 7.4%. On the basis of our bias-corrected GlobSnow 3.0 estimates, we find different continental trends over the 39-year satellite record. For example, snow mass decreased by 46 gigatonnes per decade across North America but had a negligible trend across Eurasia  both continents exhibit high regional variability. Our results enable a better estimation of the role of seasonal snow mass in Earth'  s energy, water and carbon budgets.


Applying a bias correction to a state-of-the-art dataset covering non-alpine regions of the Northern Hemisphere and to three other datasets yields a more constrained quantification of snow mass in March from 1980 to 2018.