GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
研究发现去除水中微塑料的新方法 快报文章
资源环境快报,2023年第2期
作者:  吴秀平
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:607/1  |  提交时间:2023/01/31
Egg Protein  Remove  Water Purification  
The first dinosaur egg was soft 期刊论文
NATURE, 2020
作者:  Rodstrom, Karin E. J.;  Kiper, Aytug K.;  Zhang, Wei;  Rinne, Susanne;  Pike, Ashley C. W.;  Goldstein, Matthias;  Conrad, Linus J.;  Delbeck, Martina;  Hahn, Michael G.;  Meier, Heinrich;  Platzk, Magdalena;  Quigley, Andrew;  Speedman, David;  Shrestha, Leela;  Mukhopadhyay, Shubhashish M. M.
收藏  |  浏览/下载:70/0  |  提交时间:2020/07/03

Molecular analyses of newly discovered, embryo-bearing ornithischian and sauropod dinosaur eggs suggest that the ancestral dinosaur egg was soft-shelled, and that hard-shelled eggs evolved independently at least three times in the major dinosaur lineages.


Calcified eggshells protect developing embryos against environmental stress and contribute to reproductive success(1). As modern crocodilians and birds lay hard-shelled eggs, this eggshell type has been inferred for non-avian dinosaurs. Known dinosaur eggshells are characterized by an innermost membrane, an overlying protein matrix containing calcite, and an outermost waxy cuticle(2-7). The calcitic eggshell consists of one or more ultrastructural layers that differ markedly among the three major dinosaur clades, as do the configurations of respiratory pores. So far, only hadrosaurid, a few sauropodomorph and tetanuran eggshells have been discovered  the paucity of the fossil record and the lack of intermediate eggshell types challenge efforts to homologize eggshell structures across all dinosaurs(8-18). Here we present mineralogical, organochemical and ultrastructural evidence for an originally non-biomineralized, soft-shelled nature of exceptionally preserved ornithischianProtoceratopsand basal sauropodomorphMussauruseggs. Statistical evaluation of in situ Raman spectra obtained for a representative set of hard- and soft-shelled, fossil and extant diapsid eggshells clusters the originally organic but secondarily phosphatizedProtoceratopsand the organicMussauruseggshells with soft, non-biomineralized eggshells. Histology corroborates the organic composition of these soft-shelled dinosaur eggs, revealing a stratified arrangement resembling turtle soft eggshell. Through an ancestral-state reconstruction of composition and ultrastructure, we compare eggshells fromProtoceratopsandMussauruswith those from other diapsids, revealing that the first dinosaur egg was soft-shelled. The calcified, hard-shelled dinosaur egg evolved independently at least three times throughout the Mesozoic era, explaining the bias towards eggshells of derived dinosaurs in the fossil record.


  
Neural circuitry linking mating and egg laying in Drosophila females 期刊论文
NATURE, 2020
作者:  Simonov, Arkadiy;  De Baerdemaeker, Trees;  Bostrom, Hanna L. B.;  Rios Gomez, Maria Laura;  Gray, Harry J.;  Chernyshov, Dmitry;  Bosak, Alexey;  Buergi, Hans-Beat;  Goodwin, Andrew L.
收藏  |  浏览/下载:35/0  |  提交时间:2020/07/03

Mating and egg laying are tightly cooordinated events in the reproductive life of all oviparous females. Oviposition is typically rare in virgin females but is initiated after copulation. Here we identify the neural circuitry that links egg laying to mating status in Drosophila melanogaster. Activation of female-specific oviposition descending neurons (oviDNs) is necessary and sufficient for egg laying, and is equally potent in virgin and mated females. After mating, sex peptide-a protein from the male seminal fluid-triggers many behavioural and physiological changes in the female, including the onset of egg laying(1). Sex peptide is detected by sensory neurons in the uterus(2-4), and silences these neurons and their postsynaptic ascending neurons in the abdominal ganglion(5). We show that these abdominal ganglion neurons directly activate the female-specific pC1 neurons. GABAergic (gamma-aminobutyric-acid-releasing) oviposition inhibitory neurons (oviINs) mediate feed-forward inhibition from pC1 neurons to both oviDNs and their major excitatory input, the oviposition excitatory neurons (oviENs). By attenuating the abdominal ganglion inputs to pC1 neurons and oviINs, sex peptide disinhibits oviDNs to enable egg laying after mating. This circuitry thus coordinates the two key events in female reproduction: mating and egg laying.


Neuron-tracing and labelling experiments in Drosophila females reveal the neural circuitry that coordinates mating and egg laying, and the role of sex peptide from male seminal fluid in triggering these neurons.