GSTDTAP

浏览/检索结果: 共25条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
氢基电燃料减缓气候变化的潜力和风险 快报文章
气候变化快报,2021年第10期
作者:  刘燕飞
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:434/0  |  提交时间:2021/05/20
E-fuels  hydrogen  Climate mitigation effectiveness  Energy conversion efficiency  Climate economics  
Accelerated discovery of CO2 electrocatalysts using active machine learning 期刊论文
NATURE, 2020, 581 (7807) : 178-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:91/0  |  提交时间:2020/07/03

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy(1,2). Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy(3-8). Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products(9-16), and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 +/- 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction(17). Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.


  
Power generation from ambient humidity using protein nanowires 期刊论文
NATURE, 2020, 578 (7796) : 550-+
作者:  Luong, Duy X.;  Bets, Ksenia V.;  Algozeeb, Wala Ali;  Stanford, Michael G.;  Kittrell, Carter;  Chen, Weiyin;  Salvatierra, Rodrigo V.;  Ren, Muqing;  McHugh, Emily A.;  Advincula, Paul A.;  Wang, Zhe;  Bhatt, Mahesh;  Guo, Hua;  Mancevski, Vladimir;  Shahsavari, Rouzbeh;  Yakobson, Boris I.;  Tour, James M.
收藏  |  浏览/下载:85/0  |  提交时间:2020/07/03

Harvesting energy from the environment offers the promise of clean power for self-sustained systems(1,2). Known technologies-such as solar cells, thermoelectric devices and mechanical generators-have specific environmental requirements that restrict where they can be deployed and limit their potential for continuous energy production(3-5). The ubiquity of atmospheric moisture offers an alternative. However, existing moisture-based energy-harvesting technologies can produce only intermittent, brief (shorter than 50 seconds) bursts of power in the ambient environment, owing to the lack of a sustained conversion mechanism(6-12). Here we show that thin-film devices made from nanometre-scale protein wires harvested from the microbe Geobacter sulfurreducens can generate continuous electric power in the ambient environment. The devices produce a sustained voltage of around 0.5 volts across a 7-micrometre-thick film, with a current density of around 17 microamperes per square centimetre. We find the driving force behind this energy generation to be a self-maintained moisture gradient that forms within the film when the film is exposed to the humidity that is naturally present in air. Connecting several devices linearly scales up the voltage and current to power electronics. Our results demonstrate the feasibility of a continuous energy-harvesting strategy that is less restricted by location or environmental conditions than other sustainable approaches.


A new type of energy-harvesting device, based on protein nanowires from the microbe Geobacter sulforreducens, can generate a sustained power output by producing a moisture gradient across the nanowire film using natural humidity.


  
Attosecond pulse shaping using a seeded free-electron laser 期刊论文
NATURE, 2020
作者:  Achar, Yathish Jagadheesh;  Adhil, Mohamood;  Choudhary, Ramveer;  Gilbert, Nick;  Foiani, Marco
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

Generation of intense attosecond waveforms with independently controllable amplitude and phase is performed by using a seeded free-electron laser.


Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales(1-3). The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation(4-7). Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters(8,9), multilayer mirrors(10) and manipulation of the driving field(11). However, none of these approaches allows the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free-electron lasers, by contrast, deliver femtosecond, extreme-ultraviolet and X-ray pulses with energies ranging from tens of microjoules to a few millijoules(12,13). Recent experiments have shown that they can generate subfemtosecond spikes, but with temporal characteristics that change shot-to-shot(14-16). Here we report reproducible generation of high-energy (microjoule level) attosecond waveforms using a seeded free-electron laser(17). We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with an approach for its temporal reconstruction. The results presented here open the way to performing attosecond time-resolved experiments with free-electron lasers.


  
Heterogeneous integration of single-crystalline complex-oxide membranes 期刊论文
NATURE, 2020, 578 (7793) : 75-+
作者:  Vaks, A.;  Mason, A. J.;  Breitenbach, S. F. M.;  Kononov, A. M.;  Osinzev, A. V.;  Rosensaft, M.;  Borshevsky, A.;  Gutareva, O. S.;  Henderson, G. M.
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Complex-oxide materials exhibit a vast range of functional properties desirable for next-generation electronic, spintronic, magnetoelectric, neuromorphic, and energy conversion storage devices(1-4). Their physical functionalities can be coupled by stacking layers of such materials to create heterostructures and can be further boosted by applying strain(5-7). The predominant method for heterogeneous integration and application of strain has been through heteroepitaxy, which drastically limits the possible material combinations and the ability to integrate complex oxides with mature semiconductor technologies. Moreover, key physical properties of complex-oxide thin films, such as piezoelectricity and magnetostriction, are severely reduced by the substrate clamping effect. Here we demonstrate a universal mechanical exfoliation method of producing freestanding single-crystalline membranes made from a wide range of complex-oxide materials including perovskite, spinel and garnet crystal structures with varying crystallographic orientations. In addition, we create artificial heterostructures and hybridize their physical properties by directly stacking such freestanding membranes with different crystal structures and orientations, which is not possible using conventional methods. Our results establish a platform for stacking and coupling three-dimensional structures, akin to two-dimensional material-based heterostructures, for enhancing device functionalities(8,9).


  
Energy Conversion and Dissipation at Dipolarization Fronts: A Statistical Overview 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (22) : 12693-12701
作者:  Zhong, Z. H.;  Deng, X. H.;  Zhou, M.;  Ma, W. Q.;  Tang, R. X.;  Khotyaintsev, Y. V.;  Giles, B. L.;  Russell, C. T.;  Burch, J. L.
收藏  |  浏览/下载:22/0  |  提交时间:2020/02/17
dipolarization front  energy conversion  energy dissipation  
Impacts of mesoscale sea surface temperature anomalies on the meridional shift of North Pacific storm track 期刊论文
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2019, 39 (13) : 5124-5139
作者:  Zhang, Chao;  Liu, Hailong;  Li, Chongyin;  Lin, Pengfei
收藏  |  浏览/下载:8/0  |  提交时间:2020/02/17
air-sea interaction  baroclinic energy conversion  mesoscale sea surface temperature anomaly  North Pacific storm track  
Influence of cumulus convection schemes on winter North Pacific storm tracks in the regional climate model RegCM4.5 期刊论文
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2019
作者:  Yang, Minghao;  Tan, Yanke;  Li, Xin;  Chen, Xiong;  Zhang, Chao;  Yu, Peilong
收藏  |  浏览/下载:9/0  |  提交时间:2019/11/27
baroclinic energy conversion  cumulus convection scheme  interannual variation  regional climate model  storm track  storm track index  
Variations in atmospheric perturbation potential energy associated with the South China Sea summer monsoon 期刊论文
CLIMATE DYNAMICS, 2019, 53: 2295-2308
作者:  Zhang, Yazhou;  Li, Jianping;  Wang, Qiuyun;  Xue, Jiaqing
收藏  |  浏览/下载:9/0  |  提交时间:2019/11/27
South China Sea summer monsoon  Atmospheric perturbation potential energy (PPE)  Energy conversion  Perturbation kinetic energy  Positive circulation-PPE-convection feedback  
Enhancement of lower tropospheric winter synoptic temperature variations in Southwest China and the northern Indochina Peninsula after 2010 期刊论文
CLIMATE DYNAMICS, 2019, 53: 2281-2294
作者:  Leung, Marco Y. T.;  Zhou, W.;  Cheung, K. Y.;  Gong, H. N.;  Zhang, Y.
收藏  |  浏览/下载:10/0  |  提交时间:2019/11/27
Transient eddies  Eddy kinetic energy  Eddy potential energy  Energy conversion