GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
Accelerated discovery of CO2 electrocatalysts using active machine learning 期刊论文
NATURE, 2020, 581 (7807) : 178-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:128/0  |  提交时间:2020/07/03

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy(1,2). Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy(3-8). Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products(9-16), and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 +/- 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction(17). Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.


  
Which provincial administrative regions in China should reduce their coal consumption? An environmental energy input requirement function based analysis 期刊论文
ENERGY POLICY, 2019, 127: 51-63
作者:  Li, Hong-Zhou;  Kopsakangas-Savolainen, Maria;  Yan, Ming-Zhe;  Wang, Jian-Lin;  Xie, Bai-Chen
收藏  |  浏览/下载:26/0  |  提交时间:2019/11/26
Environment energy efficiency  Undesirable outputs  SFA  Coal consumption reduction plan  China  
Pathways to a Resource-Efficient and Low-Carbon Europe 期刊论文
ECOLOGICAL ECONOMICS, 2019, 155: 88-104
作者:  Distelkamp, Martin;  Meyer, Mark
收藏  |  浏览/下载:13/0  |  提交时间:2019/04/09
Economy-energy-environment modelling  Material and energy use  Decoupling  Resource efficiency  Consumption-based accounting  Multi-region input-output model  Material footprint  Raw material equivalents  Dynamic assessment models  Macro-econometric models  
Strengthening Clean Energy Technology Cooperation under the UNFCCC: Steps toward Implementation 科技报告
来源:US Department of Energy (DOE). 出版年: 2010
作者:  Benioff, R.;  de Coninck, H.;  Dhar, S.;  Hansen, U.;  McLaren, J.;  Painuly, J.
收藏  |  浏览/下载:8/0  |  提交时间:2019/04/05
CLEAN ENERGY TECHNOLOGY  CET  UNFCCC  RD&D  INTERNATIONAL  GREENHOUSE GAS  GHG  DEPLOYMENT  ENABLING ENVIRONMENT  FINANCE  ADAPTATION  ENERGY EFFICIENCY  ROADMAP  RENEWABLE PORTFOLIO STANDARDS  RPS  FEED-IN TARIFFS  COGEN PROGRAM  INTELLECTUAL PROPERTY RI