GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
Field-resolved infrared spectroscopy of biological systems 期刊论文
NATURE, 2020, 577 (7788) : 52-+
作者:  Pupeza, Ioachim;  Huber, Marinus;  Trubetskov, Michael;  Schweinberger, Wolfgang;  Hussain, Syed A.;  Hofer, Christina;  Fritsch, Kilian;  Poetzlberger, Markus;  Vamos, Lenard;  Fill, Ernst;  Amotchkina, Tatiana;  Kepesidis, Kosmas V.;  Apolonski, Alexander;  Karpowicz, Nicholas;  Pervak, Vladimir;  Pronin, Oleg;  Fleischmann, Frank;  Azzeer, Abdallah;  Zigman, Mihaela;  Krausz, Ferenc
收藏  |  浏览/下载:30/0  |  提交时间:2020/07/03

The proper functioning of living systems and physiological phenotypes depends on molecular composition. Yet simultaneous quantitative detection of a wide variety of molecules remains a challenge(1-8). Here we show how broadband optical coherence opens up opportunities for fingerprinting complex molecular ensembles in their natural environment. Vibrationally excited molecules emit a coherent electric field following few-cycle infrared laser excitation(9-12), and this field is specific to the sample'  s molecular composition. Employing electro-optic sampling(10,12-15), we directly measure this global molecular fingerprint down to field strengths 10(7) times weaker than that of the excitation. This enables transillumination of intact living systems with thicknesses of the order of 0.1 millimetres, permitting broadband infrared spectroscopic probing of human cells and plant leaves. In a proof-of-concept analysis of human blood serum, temporal isolation of the infrared electric-field fingerprint from its excitation along with its sampling with attosecond timing precision results in detection sensitivity of submicrograms per millilitre of blood serum and a detectable dynamic range of molecular concentration exceeding 10(5). This technique promises improved molecular sensitivity and molecular coverage for probing complex, real-world biological and medical settings.


  
Mapping the twist-angle disorder and Landau levels in magic-angle graphene 期刊论文
NATURE, 2020, 581 (7806) : 47-+
作者:  Luck, Katja;  39;Amata, Cassandra
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

The recently discovered flat electronic bands and strongly correlated and superconducting phases in magic-angle twisted bilayer graphene (MATBG)(1,2) crucially depend on the interlayer twist angle, theta. Although control of the global theta with a precision of about 0.1 degrees has been demonstrated(1-7), little information is available on the distribution of the local twist angles. Here we use a nanoscale on-tip scanning superconducting quantum interference device (SQUID-on-tip)(8) to obtain tomographic images of the Landau levels in the quantum Hall state(9) and to map the local theta variations in hexagonal boron nitride (hBN)-encapsulated MATBG devices with relative precision better than 0.002 degrees and a spatial resolution of a few moire periods. We find a correlation between the degree of theta disorder and the quality of the MATBG transport characteristics and show that even state-of-the-art devices-which exhibit correlated states, Landau fans and superconductivity-display considerable local variation in theta of up to 0.1 degrees, exhibiting substantial gradients and networks of jumps, and may contain areas with no local MATBG behaviour. We observe that the correlated states in MATBG are particularly fragile with respect to the twist-angle disorder. We also show that the gradients of theta generate large gate-tunable in-plane electric fields, unscreened even in the metallic regions, which profoundly alter the quantum Hall state by forming edge channels in the bulk of the sample and may affect the phase diagram of the correlated and superconducting states. We thus establish the importance of theta disorder as an unconventional type of disorder enabling the use of twist-angle gradients for bandstructure engineering, for realization of correlated phenomena and for gate-tunable built-in planar electric fields for device applications.


SQUID-on-tip tomographic imaging of Landau levels in magic-angle graphene provides nanoscale maps of local twist-angle disorder and shows that its properties are fundamentally different from common types of disorder.


  
Is energy security a driver for economic growth? Evidence from a global sample 期刊论文
ENERGY POLICY, 2019, 129: 436-451
作者:  Le, Thai-Ha;  Canh Phuc Nguyen
收藏  |  浏览/下载:16/0  |  提交时间:2019/11/26
Energy security  Economic growth  Global sample  Panel data analysis