GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
国际能源署称2023年全球清洁能源部署达到新高 快报文章
气候变化快报,2024年第6期
作者:  秦冰雪
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:547/0  |  提交时间:2024/03/20
Clean Energy  Key Technologies  
德智库提出欧洲气候中和工业的突破性技术 快报文章
气候变化快报,2021年第10期
作者:  廖琴
Microsoft Word(23Kb)  |  收藏  |  浏览/下载:450/0  |  提交时间:2021/05/20
Climate-Neutral  Basic Materials Industries  key Low Carbon Technologies  Europe  
前景采矿工作室提出未来采矿15项关键技术 快报文章
地球科学快报,2020年第17期
作者:  刘文浩
Microsoft Word(19Kb)  |  收藏  |  浏览/下载:348/0  |  提交时间:2020/09/09
The mining industry  Key technologies  Foreground studio  
Heterogeneous integration of single-crystalline complex-oxide membranes 期刊论文
NATURE, 2020, 578 (7793) : 75-+
作者:  Vaks, A.;  Mason, A. J.;  Breitenbach, S. F. M.;  Kononov, A. M.;  Osinzev, A. V.;  Rosensaft, M.;  Borshevsky, A.;  Gutareva, O. S.;  Henderson, G. M.
收藏  |  浏览/下载:49/0  |  提交时间:2020/07/03

Complex-oxide materials exhibit a vast range of functional properties desirable for next-generation electronic, spintronic, magnetoelectric, neuromorphic, and energy conversion storage devices(1-4). Their physical functionalities can be coupled by stacking layers of such materials to create heterostructures and can be further boosted by applying strain(5-7). The predominant method for heterogeneous integration and application of strain has been through heteroepitaxy, which drastically limits the possible material combinations and the ability to integrate complex oxides with mature semiconductor technologies. Moreover, key physical properties of complex-oxide thin films, such as piezoelectricity and magnetostriction, are severely reduced by the substrate clamping effect. Here we demonstrate a universal mechanical exfoliation method of producing freestanding single-crystalline membranes made from a wide range of complex-oxide materials including perovskite, spinel and garnet crystal structures with varying crystallographic orientations. In addition, we create artificial heterostructures and hybridize their physical properties by directly stacking such freestanding membranes with different crystal structures and orientations, which is not possible using conventional methods. Our results establish a platform for stacking and coupling three-dimensional structures, akin to two-dimensional material-based heterostructures, for enhancing device functionalities(8,9).