GSTDTAP

浏览/检索结果: 共45条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
国际研究称全球河流碳输出被低估2.4亿吨 快报文章
气候变化快报,2024年第19期
作者:  董利苹
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:461/0  |  提交时间:2024/10/05
Global Riverine  Carbon Export  Observations and Multi-Model Assessment  
新研究首次全面评估氢的全球变暖潜力 快报文章
地球科学快报,2023年第12期
作者:  张树良
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:590/0  |  提交时间:2023/06/25
Global Warming Potential of hydrogen  multi-model assessment  hydrogen leakage  atmospheric chemistry  climate and earth system modelling  
新的板块边界模型可用于改善地震风险评估 快报文章
地球科学快报,2023年第1期
作者:  王晓晨
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:596/0  |  提交时间:2023/01/10
tectonic plate model  earthquake risk assessment  
印度发布首部气候变化评估报告 快报文章
气候变化快报,2020年第15期
作者:  刘燕飞
Microsoft Word(21Kb)  |  收藏  |  浏览/下载:382/0  |  提交时间:2020/08/05
Assessment of Climate Change  India  Coupled Model Intercomparison Project (CMIP)  IITM-ESM  
A deep dive into the modelling assumptions for biomass with carbon capture and storage (BECCS): a transparency exercise 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (8)
作者:  Butnar, Isabela;  Li, Pei-Hao;  Strachan, Neil;  Portugal Pereira, Joana;  Gambhir, Ajay;  Smith, Pete
收藏  |  浏览/下载:54/0  |  提交时间:2020/08/18
integrated assessment models  bioenergy with carbon capture and storage  model assumptions  transparency  climate mitigation  
Full Domestic Supply Chains of Blue Virtual Water Flows Estimated for Major US Cities 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (4)
作者:  Garcia, Susana;  Rushforth, Richard;  Ruddell, Benjamin L.;  Mejia, Alfonso
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/02
Input-Output Model  Water Footprint  Embodied water  Life cycle assessment  Trade  Industrial ecology  
Video-based AI for beat-to-beat assessment of cardiac function 期刊论文
NATURE, 2020, 580 (7802) : 252-+
作者:  Pleguezuelos-Manzano, Cayetano;  Puschhof, Jens;  Huber, Axel Rosendahl;  van Hoeck, Arne;  Wood, Henry M.;  Nomburg, Jason;  Gurjao, Carino;  Manders, Freek;  Dalmasso, Guillaume;  Stege, Paul B.;  Paganelli, Fernanda L.;  Geurts, Maarten H.;  Beumer, Joep;  Mizutani, Tomohiro;  Miao, Yi;  van der Linden, Reinier;  van der Elst, Stefan;  Garcia, K. Christopher;  Top, Janetta;  Willems, Rob J. L.;  Giannakis, Marios;  Bonnet, Richard;  Quirke, Phil;  Meyerson, Matthew;  Cuppen, Edwin;  van Boxtel, Ruben;  Clevers, Hans
收藏  |  浏览/下载:136/0  |  提交时间:2020/07/03

A video-based deep learning algorithm-EchoNet-Dynamic-accurately identifies subtle changes in ejection fraction and classifies heart failure with reduced ejection fraction using information from multiple cardiac cycles.


Accurate assessment of cardiac function is crucial for the diagnosis of cardiovascular disease(1), screening for cardiotoxicity(2) and decisions regarding the clinical management of patients with a critical illness(3). However, human assessment of cardiac function focuses on a limited sampling of cardiac cycles and has considerable inter-observer variability despite years of training(4,5). Here, to overcome this challenge, we present a video-based deep learning algorithm-EchoNet-Dynamic-that surpasses the performance of human experts in the critical tasks of segmenting the left ventricle, estimating ejection fraction and assessing cardiomyopathy. Trained on echocardiogram videos, our model accurately segments the left ventricle with a Dice similarity coefficient of 0.92, predicts ejection fraction with a mean absolute error of 4.1% and reliably classifies heart failure with reduced ejection fraction (area under the curve of 0.97). In an external dataset from another healthcare system, EchoNet-Dynamic predicts the ejection fraction with a mean absolute error of 6.0% and classifies heart failure with reduced ejection fraction with an area under the curve of 0.96. Prospective evaluation with repeated human measurements confirms that the model has variance that is comparable to or less than that of human experts. By leveraging information across multiple cardiac cycles, our model can rapidly identify subtle changes in ejection fraction, is more reproducible than human evaluation and lays the foundation for precise diagnosis of cardiovascular disease in real time. As a resource to promote further innovation, we also make publicly available a large dataset of 10,030 annotated echocardiogram videos.


  
Downscaling climate change of mean climatology and extremes of precipitation and temperature: Application to a Mediterranean climate basin 期刊论文
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2019, 39 (13) : 4985-5005
作者:  Zhang, Rong;  Corte-Real, Joao;  Moreira, Madalena;  Kilsby, Chris;  Burton, Aidan;  Fowler, Hayley J.;  Blenkinsop, Stephen;  Birkinshaw, Stephen;  Forsythe, Nathan;  Nunes, Joao P.;  Sampaio, Elsa
收藏  |  浏览/下载:25/0  |  提交时间:2020/02/17
dry spell  heat wave  hydrological impact assessment  Mediterranean climate  precipitation model  second-order autoregressive process  weather generator  
Negative emissions and international climate goals-learning from and about mitigation scenarios 期刊论文
CLIMATIC CHANGE, 2019
作者:  Hilaire, Jerome;  Minx, Jan C.;  Callaghan, Max W.;  Edmonds, Jae;  Luderer, Gunnar;  Nemet, Gregory F.;  Rogelj, Joeri;  Zamora, Maria del Mar
收藏  |  浏览/下载:31/0  |  提交时间:2019/11/27
Negative emission  Carbon dioxide removal  Systematic evidence synthesis  Integrated assessment model  1  5 degrees C  2 degrees C  
Sectoral energy efficiency improvements in Taiwan: Evaluations using a hybrid of top-down and bottom-up models 期刊论文
ENERGY POLICY, 2019, 132: 1241-1255
作者:  Wu, Yi-Hua;  Liu, Chia-Hao;  Hung, Ming-Lung;  Liu, Tzu-Yar;  Masui, Toshihiko
收藏  |  浏览/下载:18/0  |  提交时间:2019/11/27
Energy efficiency improvements  Integrated assessment models  Taiwan 2050 Calculator  Asia-Pacific Integrated Model/CGE  Taiwan