GSTDTAP

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
Video-based AI for beat-to-beat assessment of cardiac function 期刊论文
NATURE, 2020, 580 (7802) : 252-+
作者:  Pleguezuelos-Manzano, Cayetano;  Puschhof, Jens;  Huber, Axel Rosendahl;  van Hoeck, Arne;  Wood, Henry M.;  Nomburg, Jason;  Gurjao, Carino;  Manders, Freek;  Dalmasso, Guillaume;  Stege, Paul B.;  Paganelli, Fernanda L.;  Geurts, Maarten H.;  Beumer, Joep;  Mizutani, Tomohiro;  Miao, Yi;  van der Linden, Reinier;  van der Elst, Stefan;  Garcia, K. Christopher;  Top, Janetta;  Willems, Rob J. L.;  Giannakis, Marios;  Bonnet, Richard;  Quirke, Phil;  Meyerson, Matthew;  Cuppen, Edwin;  van Boxtel, Ruben;  Clevers, Hans
收藏  |  浏览/下载:149/0  |  提交时间:2020/07/03

A video-based deep learning algorithm-EchoNet-Dynamic-accurately identifies subtle changes in ejection fraction and classifies heart failure with reduced ejection fraction using information from multiple cardiac cycles.


Accurate assessment of cardiac function is crucial for the diagnosis of cardiovascular disease(1), screening for cardiotoxicity(2) and decisions regarding the clinical management of patients with a critical illness(3). However, human assessment of cardiac function focuses on a limited sampling of cardiac cycles and has considerable inter-observer variability despite years of training(4,5). Here, to overcome this challenge, we present a video-based deep learning algorithm-EchoNet-Dynamic-that surpasses the performance of human experts in the critical tasks of segmenting the left ventricle, estimating ejection fraction and assessing cardiomyopathy. Trained on echocardiogram videos, our model accurately segments the left ventricle with a Dice similarity coefficient of 0.92, predicts ejection fraction with a mean absolute error of 4.1% and reliably classifies heart failure with reduced ejection fraction (area under the curve of 0.97). In an external dataset from another healthcare system, EchoNet-Dynamic predicts the ejection fraction with a mean absolute error of 6.0% and classifies heart failure with reduced ejection fraction with an area under the curve of 0.96. Prospective evaluation with repeated human measurements confirms that the model has variance that is comparable to or less than that of human experts. By leveraging information across multiple cardiac cycles, our model can rapidly identify subtle changes in ejection fraction, is more reproducible than human evaluation and lays the foundation for precise diagnosis of cardiovascular disease in real time. As a resource to promote further innovation, we also make publicly available a large dataset of 10,030 annotated echocardiogram videos.


  
Pathways to a Resource-Efficient and Low-Carbon Europe 期刊论文
ECOLOGICAL ECONOMICS, 2019, 155: 88-104
作者:  Distelkamp, Martin;  Meyer, Mark
收藏  |  浏览/下载:20/0  |  提交时间:2019/04/09
Economy-energy-environment modelling  Material and energy use  Decoupling  Resource efficiency  Consumption-based accounting  Multi-region input-output model  Material footprint  Raw material equivalents  Dynamic assessment models  Macro-econometric models  
Implications of delaying transport decarbonisation in the EU: A systems analysis using the PRIMES model 期刊论文
ENERGY POLICY, 2018, 121: 48-60
作者:  Siskos, Pelopidas;  Zazias, Georgios;  Petropoulos, Apostolos;  Evangelopoulou, Stavroula;  Capros, Pantelis
收藏  |  浏览/下载:22/0  |  提交时间:2019/04/09
Transport sector decarbonisation  Power generation and transport systems analysis  Market and policy failure  Model based assessment  GHG emission reduction  
Assessing the applicability of WRF optimal parameters under the different precipitation simulations in the Greater Beijing Area 期刊论文
CLIMATE DYNAMICS, 2018, 50: 1927-1948
作者:  Di, Zhenhua;  Duan, Qingyun;  Wang, Chen;  Ye, Aizhong;  Miao, Chiyuan;  Gong, Wei
收藏  |  浏览/下载:19/0  |  提交时间:2019/04/09
Adaptive surrogate model-based optimization method  Parameter optimization  Optimization assessment  Weather Research and Forecasting model  
Biogas and EU's 2020 targets: Evidence from a regional case study in Italy 期刊论文
ENERGY POLICY, 2017, 109
作者:  Bartolini, Fabio;  Gava, Oriana;  Brunori, Gianluca
收藏  |  浏览/下载:14/0  |  提交时间:2019/04/09
Renewable energy  Mathematical programming model  Bio-based economy  Impact assessment  Sustainability  EU 2020 targets