GSTDTAP

浏览/检索结果: 共33条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Anthropogenic and biogenic hydrophobic VOCs detected in clouds at the puy de Dome station using Stir Bar Sorptive Extraction: Deviation from the Henry's law prediction 期刊论文
ATMOSPHERIC RESEARCH, 2020, 237
作者:  Wang, Miao;  Perroux, Helene;  Fleuret, Jennifer;  Bianco, Angelica;  Bouvier, Laetitia;  Colomb, Aurelie;  Borbon, Agnes;  Deguillaume, Laurent
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
Volatile organic compounds (VOCs)  Cloud  Gas-liquid partitioning  Henry'  s law  PUY station  Stir Bar Sorptive Extraction (SBSE)  
Increase of High Molecular Weight Organosulfate With Intensifying Urban Air Pollution in the Megacity Beijing 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (10)
作者:  Xie, Qiaorong;  Li, Ying;  Yue, Siyao;  Su, Sihui;  Cao, Dong;  Xu, Yisheng;  Chen, Jing;  Tong, Haijie;  Su, Hang;  Cheng, Yafang;  Zhao, Wanyu;  Hu, Wei;  Wang, Zhe;  Yang, Ting;  Pan, Xiaole;  Sun, Yele;  Wang, Zifa;  Liu, Cong-Qiang;  Kawamura, Kimitaka;  Jiang, Guibin;  Shiraiwa, Manabu;  Fu, Pingqing
收藏  |  浏览/下载:20/0  |  提交时间:2020/07/02
Organic aerosol  Organosulfates  FT-ICR MS  Secondary organic aerosol  Volatile organic compounds  
Emission characteristics of biogenic volatile organic compounds from representative plant species of the Korean peninsula - Focused on aldehydes 期刊论文
ATMOSPHERIC RESEARCH, 2020, 236
作者:  Kim, So-Young;  Kim, Jo-Chun;  Park, Chan-Ryul;  Son, Youn-Suk
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/02
Biogenic volatile organic compounds  Emission rate  Aldehyde  Monoterpene  Isoprene  
Estimation of Secondary Organic Aerosol Formation During a Photochemical Smog Episode in Shanghai, China 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (7)
作者:  Wang, Hongli;  Wang, Qian;  Gao, Yaqin;  Zhou, Min;  Jing, Shengao;  Qiao, Liping;  Yuan, Bin;  Huang, Dandan;  Huang, Cheng;  Lou, Shengrong;  Yan, Rusha;  de Gouw, Joost A.;  Zhang, Xuan;  Chen, Jianmin;  Chen, Changhong;  Tao, Shikang;  An, Jingyu;  Li, Yingjie
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/02
photochemistry  volatile organic compounds  secondary organic aerosols  Shanghai  
Automated synthesis on a hub-and-spoke system 期刊论文
NATURE, 2020, 579 (7799) : 346-348
作者:  Bae-Jump, Victoria L.;  Levine, Douglas A.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

A non-linear platform for flow chemistry.


Organic compounds can be synthesized in a continuous flow of solutions, but the need to balance mass flow across multiple reactors complicates the development of such systems. A new platform for flow chemistry addresses this issue.


  
Recycling and metabolic flexibility dictate life in the lower oceanic crust 期刊论文
NATURE, 2020, 579 (7798) : 250-+
作者:  Zhou, Peng;  Yang, Xing-Lou;  Wang, Xian-Guang;  Hu, Ben;  Zhang, Lei;  Zhang, Wei;  Si, Hao-Rui;  Zhu, Yan;  Li, Bei;  Huang, Chao-Lin;  Chen, Hui-Dong;  Chen, Jing;  Luo, Yun;  Guo, Hua;  Jiang, Ren-Di;  Liu, Mei-Qin;  Chen, Ying;  Shen, Xu-Rui;  Wang, Xi;  Zheng, Xiao-Shuang;  Zhao, Kai;  Chen, Quan-Jiao;  Deng, Fei;  Liu, Lin-Lin;  Yan, Bing;  Zhan, Fa-Xian;  Wang, Yan-Yi;  Xiao, Geng-Fu;  Shi, Zheng-Li
收藏  |  浏览/下载:37/0  |  提交时间:2020/05/13

The lithified lower oceanic crust is one of Earth'  s last biological frontiers as it is difficult to access. It is challenging for microbiota that live in marine subsurface sediments or igneous basement to obtain sufficient carbon resources and energy to support growth(1-3) or to meet basal power requirements(4) during periods of resource scarcity. Here we show how limited and unpredictable sources of carbon and energy dictate survival strategies used by low-biomass microbial communities that live 10-750 m below the seafloor at Atlantis Bank, Indian Ocean, where Earth'  s lower crust is exposed at the seafloor. Assays of enzyme activities, lipid biomarkers, marker genes and microscopy indicate heterogeneously distributed and viable biomass with ultralow cell densities (fewer than 2,000 cells per cm(3)). Expression of genes involved in unexpected heterotrophic processes includes those with a role in the degradation of polyaromatic hydrocarbons, use of polyhydroxyalkanoates as carbon-storage molecules and recycling of amino acids to produce compounds that can participate in redox reactions and energy production. Our study provides insights into how microorganisms in the plutonic crust are able to survive within fractures or porous substrates by coupling sources of energy to organic and inorganic carbon resources that are probably delivered through the circulation of subseafloor fluids or seawater.


  
Automated radial synthesis of organic molecules 期刊论文
NATURE, 2020, 579 (7799) : 379-+
作者:  van den Brink, Susanne C.;  Alemany, Anna;  van Batenburg, Vincent;  Moris, Naomi;  Blotenburg, Marloes;  Vivie, Judith;  Baillie-Johnson, Peter;  Nichols, Jennifer;  Sonnen, Katharina F.;  Martinez Arias, Alfonso;  van Oudenaarden, Alexander
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

An automated synthesis instrument comprising a series of continuous flow modules that are radially arranged around a central switching station can achieve both linear and convergent syntheses.


Automated synthesis platforms accelerate and simplify the preparation of molecules by removing the physical barriers to organic synthesis. This provides unrestricted access to biopolymers and small molecules via reproducible and directly comparable chemical processes. Current automated multistep syntheses rely on either iterative(1-4) or linear processes(5-9), and require compromises in terms of versatility and the use of equipment. Here we report an approach towards the automated synthesis of small molecules, based on a series of continuous flow modules that are radially arranged around a central switching station. Using this approach, concise volumes can be exposed to any reaction conditions required for a desired transformation. Sequential, non-simultaneous reactions can be combined to perform multistep processes, enabling the use of variable flow rates, reuse of reactors under different conditions, and the storage of intermediates. This fully automated instrument is capable of both linear and convergent syntheses and does not require manual reconfiguration between different processes. The capabilities of this approach are demonstrated by performing optimizations and multistep syntheses of targets, varying concentrations via inline dilutions, exploring several strategies for the multistep synthesis of the anticonvulsant drug rufinamide(10), synthesizing eighteen compounds of two derivative libraries that are prepared using different reaction pathways and chemistries, and using the same reagents to perform metallaphotoredox carbon-nitrogen cross-couplings(11) in a photochemical module-all without instrument reconfiguration.


  
Copper-mediated synthesis of drug-like bicyclopentanes 期刊论文
NATURE, 2020, 580 (7802) : 220-+
作者:  Canavelli, Pierre;  Islam, Saidul;  Powner, Matthew W.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Multicomponent reactions are relied on in both academic and industrial synthetic organic chemistry owing to their step- and atom-economy advantages over traditional synthetic sequences(1). Recently, bicyclo[1.1.1]pentane (BCP) motifs have become valuable as pharmaceutical bioisosteres of benzene rings, and in particular 1,3-disubstituted BCP moieties have become widely adopted in medicinal chemistry as para-phenyl ring replacements(2). These structures are often generated from [1.1.1]propellane via opening of the internal C-C bond through the addition of either radicals or metal-based nucleophiles(3-13). The resulting propellane-addition adducts are then transformed to the requisite polysubstituted BCP compounds via a range of synthetic sequences that traditionally involve multiple chemical steps. Although this approach has been effective so far, a multicomponent reaction that enables single-step access to complex and diverse polysubstituted drug-like BCP products would be more time efficient compared to current stepwise approaches. Here we report a one-step three-component radical coupling of [1.1.1]propellane to afford diverse functionalized bicyclopentanes using various radical precursors and heteroatom nucleophiles via a metallaphotoredox catalysis protocol. This copper-mediated reaction operates on short timescales (five minutes to one hour) across multiple (more than ten) nucleophile classes and can accommodate a diverse array of radical precursors, including those that generate alkyl, alpha-acyl, trifluoromethyl and sulfonyl radicals. This method has been used to rapidly prepare BCP analogues of known pharmaceuticals, one of which is substantially more metabolically stable than its commercial progenitor.


A one-step, three-component radical coupling of [1.1.1]propellane by a photoredox reaction mediated by a copper catalyst produces drug-like bicyclopentanes.


  
Actinide 2-metallabiphenylenes that satisfy Huckel's rule 期刊论文
NATURE, 2020, 578 (7796) : 563-+
作者:  Achar, Yathish Jagadheesh;  Adhil, Mohamood;  Choudhary, Ramveer;  Gilbert, Nick;  Foiani, Marco
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

Aromaticity and antiaromaticity, as defined by Huckel'  s rule, are key ideas in organic chemistry, and are both exemplified in biphenylene(1-3)-a molecule that consists of two benzene rings joined by a four-membered ring at its core. Biphenylene analogues in which one of the benzene rings has been replaced by a different (4n + 2) pi-electron system have so far been associated only with organic compounds(4,5). In addition, efforts to prepare a zirconabiphenylene compound resulted in the isolation of a bis(alkyne) zirconocene complex instead(6). Here we report the synthesis and characterization of, to our knowledge, the first 2-metallabiphenylene compounds. Single-crystal X-ray diffraction studies reveal that these complexes have nearly planar, 11-membered metallatricycles with metrical parameters that compare well with those reported for biphenylene. Nuclear magnetic resonance spectroscopy, in addition to nucleus-independent chemical shift calculations, provides evidence that these complexes contain an antiaromatic cyclobutadiene ring and an aromatic benzene ring. Furthermore, spectroscopic evidence, Kohn-Sham molecular orbital compositions and natural bond orbital calculations suggest covalency and delocalization of the uranium f(2) electrons with the carbon-containing ligand.


The synthesis of uranium- and thorium-containing metallabiphenylenes demonstrates the ability of the actinides to stabilize aromatic/antiaromatic structures where transition metals have failed.


  
Redox-switchable carboranes for uranium capture and release 期刊论文
NATURE, 2020, 577 (7792) : 652-+
作者:  Marques, Joao C.;  Li, Meng;  Schaak, Diane;  Robson, Drew N.;  Li, Jennifer M.
收藏  |  浏览/下载:32/0  |  提交时间:2020/07/03

The uranyl ion (UO22+  U(vi) oxidation state) is the most common form of uranium found in terrestrial and aquatic environments and is a central component in nuclear fuel processing and waste remediation efforts. Uranyl capture from either seawater or nuclear waste has been well studied and typically relies on extremely strong chelating/binding affinities to UO22+ using chelating polymers(1,2), porous inorganic(3-5) or carbon-based(6,7) materials, as well as homogeneous(8) compounds. By contrast, the controlled release of uranyl after capture is less established and can be difficult, expensive or destructive to the initial material(2,9). Here we show how harnessing the redox-switchable chelating and donating properties of an ortho-substituted closo-carborane (1,2-(Ph2PO)(2)-1,2-C2B10H10) cluster molecule can lead to the controlled chemical or electrochemical capture and release of UO22+ in monophasic (organic) or biphasic (organic/aqueous) model solvent systems. This is achieved by taking advantage of the increase in the ligand bite angle when the closo-carborane is reduced to the nido-carborane, resulting in C-C bond rupture and cage opening. The use of electrochemical methods for uranyl capture and release may complement existing sorbent and processing systems.


Redox-switchable chelation is demonstrated for a carborane cluster molecule, leading to controlled chemical or electrochemical capture and release of uranyl in monophasic or biphasic model solvent systems.