GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
A biomimetic eye with a hemispherical perovskite nanowire array retina 期刊论文
NATURE, 2020, 581 (7808) : 278-+
作者:  Hueckel, Theodore;  Hocky, Glen M.;  Palacci, Jeremie;  Sacanna, Stefano
收藏  |  浏览/下载:75/0  |  提交时间:2020/07/03

A biomimetic electrochemical eye is presented that has a hemispherical retina made from a high-density array of perovskite nanowires that are sensitive to light, mimicking the photoreceptors of a biological retina.


Human eyes possess exceptional image-sensing characteristics such as an extremely wide field of view, high resolution and sensitivity with low aberration(1). Biomimetic eyes with such characteristics are highly desirable, especially in robotics and visual prostheses. However, the spherical shape and the retina of the biological eye pose an enormous fabrication challenge for biomimetic devices(2,3). Here we present an electrochemical eye with a hemispherical retina made of a high-density array of nanowires mimicking the photoreceptors on a human retina. The device design has a high degree of structural similarity to a human eye with the potential to achieve high imaging resolution when individual nanowires are electrically addressed. Additionally, we demonstrate the image-sensing function of our biomimetic device by reconstructing the optical patterns projected onto the device. This work may lead to biomimetic photosensing devices that could find use in a wide spectrum of technological applications.


  
Electrically pumped topological laser with valley edge modes 期刊论文
NATURE, 2020, 578 (7794) : 246-+
作者:  Erickson, Peter;  van Asselt, Harro;  Koplow, Doug;  Lazarus, Michael;  Newell, Peter;  Oreskes, Naomi;  Supran, Geoffrey
收藏  |  浏览/下载:53/0  |  提交时间:2020/07/03

Quantum cascade lasers are compact, electrically pumped light sources in the technologically important mid-infrared and terahertz region of the electromagnetic spectrum(1,2). Recently, the concept of topology(3) has been expanded from condensed matter physics into photonics(4), giving rise to a new type of lasing(5-8) using topologically protected photonic modes that can efficiently bypass corners and defects(4). Previous demonstrations of topological lasers have required an external laser source for optical pumping and have operated in the conventional optical frequency regime(5-8). Here we demonstrate an electrically pumped terahertz quantum cascade laser based on topologically protected valley edge states(9-11). Unlike topological lasers that rely on large-scale features to impart topological protection, our compact design makes use of the valley degree of freedom in photonic crystals(10,11), analogous to two-dimensional gapped valleytronic materials(12). Lasing with regularly spaced emission peaks occurs in a sharp-cornered triangular cavity, even if perturbations are introduced into the underlying structure, owing to the existence of topologically protected valley edge states that circulate around the cavity without experiencing localization. We probe the properties of the topological lasing modes by adding different outcouplers to the topological cavity. The laser based on valley edge states may open routes to the practical use of topological protection in electrically driven laser sources.


  
Investigation of the fine structure of antihydrogen 期刊论文
NATURE, 2020, 578 (7795) : 375-+
作者:  Zhang, Bing;  Ma, Sai;  Rachmin, Inbal;  He, Megan;  Baral, Pankaj;  Choi, Sekyu;  Goncalves, William A.;  Shwartz, Yulia;  Fast, Eva M.;  Su, Yiqun;  Zon, Leonard I.;  Regev, Aviv;  Buenrostro, Jason D.;  Cunha, Thiago M.;  Chiu, Isaac M.;  Fisher, David E.;  Hsu, Ya-Chieh
收藏  |  浏览/下载:56/0  |  提交时间:2020/07/03

At the historic Shelter Island Conference on the Foundations of Quantum Mechanics in 1947, Willis Lamb reported an unexpected feature in the fine structure of atomic hydrogen: a separation of the 2S(1/2) and 2P(1/2) states(1). The observation of this separation, now known as the Lamb shift, marked an important event in the evolution of modern physics, inspiring others to develop the theory of quantum electrodynamics(2-5). Quantum electrodynamics also describes antimatter, but it has only recently become possible to synthesize and trap atomic antimatter to probe its structure. Mirroring the historical development of quantum atomic physics in the twentieth century, modern measurements on anti-atoms represent a unique approach for testing quantum electrodynamics and the foundational symmetries of the standard model. Here we report measurements of the fine structure in the n = 2 states of antihydrogen, the antimatter counterpart of the hydrogen atom. Using optical excitation of the 1S-2P Lyman-alpha transitions in antihydrogen(6), we determine their frequencies in a magnetic field of 1 tesla to a precision of 16 parts per billion. Assuming the standard Zeeman and hyperfine interactions, we infer the zero-field fine-structure splitting (2P(1/2)-2P(3/2)) in antihydrogen. The resulting value is consistent with the predictions of quantum electrodynamics to a precision of 2 per cent. Using our previously measured value of the 1S-2S transition frequency(6,7), we find that the classic Lamb shift in antihydrogen (2S(1/2)-2P(1/2) splitting at zero field) is consistent with theory at a level of 11 per cent. Our observations represent an important step towards precision measurements of the fine structure and the Lamb shift in the antihydrogen spectrum as tests of the charge-parity-time symmetry(8) and towards the determination of other fundamental quantities, such as the antiproton charge radius(9,10), in this antimatter system.


Precision measurements of the 1S-2P transition in antihydrogen that take into account the standard Zeeman and hyperfine effects confirm the predictions of quantum electrodynamics.


  
Optical Spectra and Emission Altitudes of Double-Layer STEVE: A Case Study 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (23) : 13630-13639
作者:  Liang, Jun;  Donovan, E.;  Connors, M.;  Gillies, D.;  St-Maurice, J. P.;  Jackel, B.;  Gallardo-Lacourt, B.;  Spanswick, E.;  Chu, X.
收藏  |  浏览/下载:21/0  |  提交时间:2020/02/17
STEVE  Optical spectrum  Emission altitude  Airglow continuum  Red-line emission