GSTDTAP

浏览/检索结果: 共16条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
The single-cell pathology landscape of breast cancer 期刊论文
NATURE, 2020, 578 (7796) : 615-+
作者:  Fouda, Abdelrahman Y.
收藏  |  浏览/下载:36/0  |  提交时间:2020/07/03

Single-cell analyses have revealed extensive heterogeneity between and within human tumours(1-4), but complex single-cell phenotypes and their spatial context are not at present reflected in the histological stratification that is the foundation of many clinical decisions. Here we use imaging mass cytometry(5) to simultaneously quantify 35 biomarkers, resulting in 720 high-dimensional pathology images of tumour tissue from 352 patients with breast cancer, with long-term survival data available for 281 patients. Spatially resolved, single-cell analysis identified the phenotypes of tumour and stromal single cells, their organization and their heterogeneity, and enabled the cellular architecture of breast cancer tissue to be characterized on the basis of cellular composition and tissue organization. Our analysis reveals multicellular features of the tumour microenvironment and novel subgroups of breast cancer that are associated with distinct clinical outcomes. Thus, spatially resolved, single-cell analysis can characterize intratumour phenotypic heterogeneity in a disease-relevant manner, with the potential to inform patient-specific diagnosis.


A single-cell, spatially resolved analysis of breast cancer demonstrates the heterogeneity of tumour and stroma tissue and provides a more-detailed method of patient classification than the current histology-based system.


  
IGF1R is an entry receptor for respiratory syncytial virus 期刊论文
NATURE, 2020, 583 (7817) : 615-+
作者:  Pasquina-Lemonche, L.;  Burns, J.;  Turner, R. D.;  Kumar, S.;  Tank, R.;  Mullin, N.;  Wilson, J. S.;  Chakrabarti, B.;  Bullough, P. A.;  Foster, S. J.;  Hobbs, J. K.
收藏  |  浏览/下载:36/0  |  提交时间:2020/07/03

Respiratory syncytial virus enters cells by binding to cell-surface IGFR1, which activates PKC zeta and induces trafficking of the NCL coreceptor to the RSV particles at the cell surface.


Pneumonia resulting from infection is one of the leading causes of death worldwide. Pulmonary infection by the respiratory syncytial virus (RSV) is a large burden on human health, for which there are few therapeutic options(1). RSV targets ciliated epithelial cells in the airways, but how viruses such as RSV interact with receptors on these cells is not understood. Nucleolin is an entry coreceptor for RSV2 and also mediates the cellular entry of influenza, the parainfluenza virus, some enteroviruses and the bacterium that causes tularaemia(3,4). Here we show a mechanism of RSV entry into cells in which outside-in signalling, involving binding of the prefusion RSV-F glycoprotein with the insulin-like growth factor-1 receptor, triggers the activation of protein kinase C zeta (PKC zeta). This cellular signalling cascade recruits nucleolin from the nuclei of cells to the plasma membrane, where it also binds to RSV-F on virions. We find that inhibiting PKC zeta activation prevents the trafficking of nucleolin to RSV particles on airway organoid cultures, and reduces viral replication and pathology in RSV-infected mice. These findings reveal a mechanism of virus entry in which receptor engagement and signal transduction bring the coreceptor to viral particles at the cell surface, and could form the basis of new therapeutics to treat RSV infection.


  
APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline 期刊论文
NATURE, 2020, 581 (7806) : 70-+
作者:  Doherty, Tiarnan A. S.;  Winchester, Andrew J.;  Macpherson, Stuart;  Johnstone, Duncan N.;  Pareek, Vivek;  Tennyson, Elizabeth M.;  Kosar, Sofiia;  Kosasih, Felix U.;  Anaya, Miguel;  Abdi-Jalebi, Mojtaba;  Andaji-Garmaroudi, Zahra;  Wong, E. Laine;  Madeo, Julien;  Chiang, Yu-Hsien;  Park, Ji-Sang;  Jung, Young-Kwang;  Petoukhoff, Christopher E.;  Divitini, Giorgio;  Man, Michael K. L.;  Ducati, Caterina;  Walsh, Aron;  Midgley, Paul A.;  Dani, Keshav M.;  Stranks, Samuel D.
收藏  |  浏览/下载:56/0  |  提交时间:2020/07/03

Breakdown of the blood-brain barrier in individuals carrying the epsilon 4 allele of the APOE gene, but not the epsilon 3 allele, increases with and predicts cognitive impairment and is independent of amyloid beta or tau pathology.


Vascular contributions to dementia and Alzheimer'  s disease are increasingly recognized(1-6). Recent studies have suggested that breakdown of the blood-brain barrier (BBB) is an early biomarker of human cognitive dysfunction(7), including the early clinical stages of Alzheimer'  s disease(5,8-10). The E4 variant of apolipoprotein E (APOE4), the main susceptibility gene for Alzheimer'  s disease(11-14), leads to accelerated breakdown of the BBB and degeneration of brain capillary pericytes(15-19), which maintain BBB integrity(20-22). It is unclear, however, whether the cerebrovascular effects of APOE4 contribute to cognitive impairment. Here we show that individuals bearing APOE4 (with the epsilon 3/epsilon 4 or epsilon 4/epsilon 4 alleles) are distinguished from those without APOE4 (epsilon 3/epsilon 3) by breakdown of the BBB in the hippocampus and medial temporal lobe. This finding is apparent in cognitively unimpaired APOE4 carriers and more severe in those with cognitive impairment, but is not related to amyloid-beta or tau pathology measured in cerebrospinal fluid or by positron emission tomography(23). High baseline levels of the BBB pericyte injury biomarker soluble PDGFR beta(7,8) in the cerebrospinal fluid predicted future cognitive decline in APOE4 carriers but not in non-carriers, even after controlling for amyloid-beta and tau status, and were correlated with increased activity of the BBB-degrading cyclophilin A-matrix metalloproteinase-9 pathway(19) in cerebrospinal fluid. Our findings suggest that breakdown of the BBB contributes to APOE4-associated cognitive decline independently of Alzheimer'  s disease pathology, and might be a therapeutic target in APOE4 carriers.


  
Notch signalling drives synovial fibroblast identity and arthritis pathology 期刊论文
NATURE, 2020, 582 (7811) : 259-+
作者:  Han, Xiaoping;  Zhou, Ziming;  Fei, Lijiang;  Sun, Huiyu;  Wang, Renying;  Chen, Yao;  Chen, Haide;  Wang, Jingjing;  Tang, Huanna;  Ge, Wenhao;  Zhou, Yincong;  Ye, Fang;  Jiang, Mengmeng;  Wu, Junqing;  Xiao, Yanyu;  Jia, Xiaoning;  Zhang, Tingyue;  Ma, Xiaojie;  Zhang, Qi;  Bai, Xueli;  Lai, Shujing;  Yu, Chengxuan;  Zhu, Lijun;  Lin, Rui;  Gao, Yuchi;  Wang, Min;  Wu, Yiqing;  Zhang, Jianming;  Zhan, Renya;  Zhu, Saiyong;  Hu, Hailan;  Wang, Changchun;  Chen, Ming;  Huang, He;  Liang, Tingbo;  Chen, Jianghua;  Wang, Weilin;  Zhang, Dan;  Guo, Guoji
收藏  |  浏览/下载:74/0  |  提交时间:2020/07/03

NOTCH3 signalling is shown to be the underlying driver of the differentiation and expansion of a subset of synovial fibroblasts implicated in the pathogenesis of rheumatoid arthritis.


The synovium is a mesenchymal tissue composed mainly of fibroblasts, with a lining and sublining that surround the joints. In rheumatoid arthritis the synovial tissue undergoes marked hyperplasia, becomes inflamed and invasive, and destroys the joint(1,2). It has recently been shown that a subset of fibroblasts in the sublining undergoes a major expansion in rheumatoid arthritis that is linked to disease activity(3-5)  however, the molecular mechanism by which these fibroblasts differentiate and expand is unknown. Here we identify a critical role for NOTCH3 signalling in the differentiation of perivascular and sublining fibroblasts that express CD90 (encoded by THY1). Using single-cell RNA sequencing and synovial tissue organoids, we found that NOTCH3 signalling drives both transcriptional and spatial gradients-emanating from vascular endothelial cells outwards-in fibroblasts. In active rheumatoid arthritis, NOTCH3 and Notch target genes are markedly upregulated in synovial fibroblasts. In mice, the genetic deletion of Notch3 or the blockade of NOTCH3 signalling attenuates inflammation and prevents joint damage in inflammatory arthritis. Our results indicate that synovial fibroblasts exhibit a positional identity that is regulated by endothelium-derived Notch signalling, and that this stromal crosstalk pathway underlies inflammation and pathology in inflammatory arthritis.


  
MAFG-driven astrocytes promote CNS inflammation 期刊论文
NATURE, 2020, 578 (7796) : 593-+
作者:  Clark, Peter U.;  He, Feng;  Golledge, Nicholas R.;  Mitrovica, Jerry X.;  Dutton, Andrea;  Hoffman, Jeremy S.;  Dendy, Sarah
收藏  |  浏览/下载:64/0  |  提交时间:2020/07/03

Multiple sclerosis is a chronic inflammatory disease of the CNS1. Astrocytes contribute to the pathogenesis of multiple sclerosis(2), but little is known about the heterogeneity of astrocytes and its regulation. Here we report the analysis of astrocytes in multiple sclerosis and its preclinical model experimental autoimmune encephalomyelitis (EAE) by single-cell RNA sequencing in combination with cell-specific Ribotag RNA profiling, assay for transposase-accessible chromatin with sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing (ChIP-seq), genome-wide analysis of DNA methylation and in vivo CRISPR-Cas9-based genetic perturbations. We identified astrocytes in EAE and multiple sclerosis that were characterized by decreased expression of NRF2 and increased expression of MAFG, which cooperates with MAT2 alpha to promote DNA methylation and represses antioxidant and anti-inflammatory transcriptional programs. Granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling in astrocytes drives the expression of MAFG and MAT2 alpha and pro-inflammatory transcriptional modules, contributing to CNS pathology in EAE and, potentially, multiple sclerosis. Our results identify candidate therapeutic targets in multiple sclerosis.


Single-cell RNA sequencing of cells from humans with multiple sclerosis and mice with a model of the disease identifies a population of disease-promoting astrocytes in which anti-oxidant and anti-inflammatory proteins are suppressed.


  
Butt rot incidence in the northernmost distribution area of Heterobasidion in Finland 期刊论文
FOREST ECOLOGY AND MANAGEMENT, 2018, 425: 154-163
作者:  Muller, Michael M.;  Kaitera, Juha;  Henttonen, Helena M.
收藏  |  浏览/下载:15/0  |  提交时间:2019/04/09
Norway spruce  Picea abies  Scots pine  Pinus sylvestris  Forest pathology  Decay  Climate change  Site fertility  
Distribution of Heterobasidion butt rot in northern Finland 期刊论文
FOREST ECOLOGY AND MANAGEMENT, 2018, 425: 85-91
作者:  Muller, Michael M.;  Henttonen, Helena M.;  Penttila, Reijo;  Kulju, Matti;  Helo, Teppo;  Kaitera, Juha
收藏  |  浏览/下载:15/0  |  提交时间:2019/04/09
Climate change  Decay  Forest pathology  Norway spruce  Picea abies  Root rot  Site fertility  Soil pH  
Estimate global risks of a forest disease under current and future climates using species distribution model and simple thermal model Pine Wilt disease as a model case 期刊论文
FOREST ECOLOGY AND MANAGEMENT, 2018, 409: 343-352
作者:  Ikegami, Makihiko;  Jenkins, Thomas A. R.
收藏  |  浏览/下载:19/0  |  提交时间:2019/04/09
Pine Wilt Disease  Species distribution model  Climate change  Forest pathology  Pest risk analysis  
Global Conference on Plant Science and Molecular Biology 会议
valencia, Spain, 会议类型: Conference, 2017