GSTDTAP

浏览/检索结果: 共6条,第1-6条 帮助

已选(0)清除 条数/页:   排序方式:
A heated response to danger 期刊论文
NATURE, 2020, 580 (7802)
作者:  Perry, Keston
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

Psychological stress can trigger physiological responses, including an increase in body temperature. A neural circuit that underlies this stress-induced heat response has been identified.


  
Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease 期刊论文
NATURE, 2020, 577 (7788) : 103-+
作者:  Lalaoui, Najoua;  Boyden, Steven E.;  Oda, Hirotsugu;  Wood, Geryl M.;  Stone, Deborah L.;  Chau, Diep;  Liu, Lin;  Stoffels, Monique;  Kratina, Tobias;  Lawlor, Kate E.;  Zaal, Kristien J. M.;  Hoffmann, Patrycja M.;  Etemadi, Nima;  Shield-Artin, Kristy;  Biben, Christine;  Tsai, Wanxia Li;  Blake, Mary D.;  Kuehn, Hye Sun;  Yang, Dan;  Anderton, Holly;  Silke, Natasha;  Wachsmuth, Laurens;  Zheng, Lixin;  Moura, Natalia Sampaio;  Beck, David B.;  Gutierrez-Cruz, Gustavo;  Ombrello, Amanda K.;  Pinto-Patarroyo, Gineth P.;  Kueh, Andrew J.;  Herold, Marco J.;  Hall, Cathrine;  Wang, Hongying;  Chae, Jae Jin;  Dmitrieva, Natalia I.;  McKenzie, Mark;  Light, Amanda;  Barham, Beverly K.;  Jones, Anne;  Romeo, Tina M.;  Zhou, Qing;  Aksentijevich, Ivona;  Mullikin, James C.;  Gross, Andrew J.;  Shum, Anthony K.;  Hawkins, Edwin D.;  Masters, Seth L.;  Lenardo, Michael J.;  Boehm, Manfred;  Rosenzweig, Sergio D.;  Pasparakis, Manolis;  Voss, Anne K.;  Gadina, Massimo;  Kastner, Daniel L.;  Silke, John
收藏  |  浏览/下载:70/0  |  提交时间:2020/07/03

RIPK1 is a key regulator of innate immune signalling pathways. To ensure an optimal inflammatory response, RIPK1 is regulated post-translationally by well-characterized ubiquitylation and phosphorylation events, as well as by caspase-8-mediated cleavage1-7. The physiological relevance of this cleavage event remains unclear, although it is thought to inhibit activation of RIPK3 and necroptosis8. Here we show that the heterozygous missense mutations D324N, D324H and D324Y prevent caspase cleavage of RIPK1 in humans and result in an early-onset periodic fever syndrome and severe intermittent lymphadenopathy-a condition we term '  cleavage-resistant RIPK1-induced autoinflammatory syndrome'  . To define the mechanism for this disease, we generated a cleavage-resistant Ripk1(D325A) mutant mouse strain. Whereas Ripk1(-/-) mice died postnatally from systemic inflammation, Ripk1(D325A/D325A) mice died during embryogenesis. Embryonic lethality was completely prevented by the combined loss of Casp8 and Ripk3, but not by loss of Ripk3 or Mlkl alone. Loss of RIPK1 kinase activity also prevented Ripk1(D325A/D325A) embryonic lethality, although the mice died before weaning from multi-organ inflammation in a RIPK3-dependent manner. Consistently, Ripk1(D325A/D325A) and Ripk1(D325A/+) cells were hypersensitive to RIPK3-dependent TNF-induced apoptosis and necroptosis. Heterozygous Ripk1(D325A/+) mice were viable and grossly normal, but were hyper-responsive to inflammatory stimuli in vivo. Our results demonstrate the importance of caspase-mediated RIPK1 cleavage during embryonic development and show that caspase cleavage of RIPK1 not only inhibits necroptosis but also maintains inflammatory homeostasis throughout life.


  
A neurotransmitter produced by gut bacteria modulates host sensory behaviour 期刊论文
NATURE, 2020
作者:  Zhao, Xiaoxu;  Song, Peng;  Wang, Chengcai;  Riis-Jensen, Anders C.;  Fu, Wei;  Deng, Ya;  Wan, Dongyang;  Kang, Lixing;  Ning, Shoucong;  Dan, Jiadong;  Venkatesan, T.;  Liu, Zheng;  Zhou, Wu;  Thygesen, Kristian S.;  Luo, Xin;  Pennycook, Stephen J.;  Loh, Kian Ping
收藏  |  浏览/下载:34/0  |  提交时间:2020/07/03

A neuromodulator produced by commensalProvidenciabacteria that colonize the gut ofCaenorhabditis elegansmimics the functions of the cognate host molecule to manipulate a sensory decision of the host.


Animals coexist in commensal, pathogenic or mutualistic relationships with complex communities of diverse organisms, including microorganisms(1). Some bacteria produce bioactive neurotransmitters that have previously been proposed to modulate nervous system activity and behaviours of their hosts(2,3). However, the mechanistic basis of this microbiota-brain signalling and its physiological relevance are largely unknown. Here we show that inCaenorhabditis elegans, the neuromodulator tyramine produced by commensalProvidenciabacteria, which colonize the gut, bypasses the requirement for host tyramine biosynthesis and manipulates a host sensory decision. Bacterially produced tyramine is probably converted to octopamine by the host tyramine beta-hydroxylase enzyme. Octopamine, in turn, targets the OCTR-1 octopamine receptor on ASH nociceptive neurons to modulate an aversive olfactory response. We identify the genes that are required for tyramine biosynthesis inProvidencia, and show that these genes are necessary for the modulation of host behaviour. We further find thatC. eleganscolonized byProvidenciapreferentially select these bacteria in food choice assays, and that this selection bias requires bacterially produced tyramine and host octopamine signalling. Our results demonstrate that a neurotransmitter produced by gut bacteria mimics the functions of the cognate host molecule to override host control of a sensory decision, and thereby promotes fitness of both the host and the microorganism.


  
Sensitivity analysis of changes in human physiological indicators observed in soundscapes 期刊论文
LANDSCAPE AND URBAN PLANNING, 2019, 190
作者:  Li, Zhongzhe;  Kang, Jian
收藏  |  浏览/下载:27/0  |  提交时间:2019/11/27
Soundscape  Physiological response  Time effect  Subjective evaluation  
Carbon Dioxide Physiological Forcing Dominates Projected Eastern Amazonian Drying 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (6) : 2815-2825
作者:  Richardson, T. B.;  Forster, P. M.;  Andrews, T.;  Boucher, O.;  Faluvegi, G.;  Flaeschner, D.;  Kasoar, M.;  Kirkevag, A.;  Lamarque, J. -F.;  Myhre, G.;  Olivie, D.;  Samset, B. H.;  Shawki, D.;  Shindell, D.;  Takemura, T.;  Voulgarakis, A.
收藏  |  浏览/下载:13/0  |  提交时间:2019/04/09
precipitation  Amazon  physiological forcing  fast response  CO2 forcing  stomatal response  
Non-linear interactions between CO2 radiative and physiological effects on Amazonian evapotranspiration in an Earth system model 期刊论文
CLIMATE DYNAMICS, 2017, 49
作者:  Halladay, Kate;  Good, Peter
收藏  |  浏览/下载:17/0  |  提交时间:2019/04/09
Evapotranspiration  Physiological forcing  Amazonia  CO2 response  Earth system model