GSTDTAP

浏览/检索结果: 共19条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
粮食和农业创新优先领域与投资建议 快报文章
资源环境快报,2023年第23期
作者:  董利苹
Microsoft Word(19Kb)  |  收藏  |  浏览/下载:464/0  |  提交时间:2023/12/15
COP28  Priority Innovations  Investment Recommendations  
科学家提出南极化学污染研究和监测的优先事项 快报文章
资源环境快报,2023年第11期
作者:  廖 琴
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:595/3  |  提交时间:2023/06/15
Antarctica  Persistent Organic Chemicals  Priority Actions  
英国生态学会呼吁加大对生态研究的资助并提出研究议程 快报文章
资源环境快报,2023年第07期
作者:  裴惠娟
Microsoft Word(19Kb)  |  收藏  |  浏览/下载:591/0  |  提交时间:2023/04/15
UK  Ecology  Funding  Priority Themes  
USGS发布《水资源研究行动计划(2020—2030年)》 快报文章
资源环境快报,2021年第23期
作者:  吴秀平
Microsoft Word(20Kb)  |  收藏  |  浏览/下载:780/1  |  提交时间:2021/12/16
Water Resources  Priority  Goal  USGS  
IISD为实现净零排放的五项优先行动制定全球路线图 快报文章
资源环境快报,2021年第19期
作者:  牛艺博
Microsoft Word(25Kb)  |  收藏  |  浏览/下载:695/0  |  提交时间:2021/10/15
SDG 7  Net Zero Emissions  Priority Actions  Global Roadmap  
有针对性的生态系统恢复将大幅提高自然保护的收益 快报文章
资源环境快报,2020年第20期
作者:  裴惠娟
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:443/0  |  提交时间:2020/11/02
Ecosystem Restoration  Priority Areas  Biodiversity  Carbon Dioxide  
Massively multiplexed nucleic acid detection with Cas13 期刊论文
NATURE, 2020, 582 (7811) : 277-+
作者:  Mahato, Biraj;  Kaya, Koray Dogan;  Fan, Yan;  Sumien, Nathalie;  Shetty, Ritu A.;  Zhang, Wei;  Davis, Delaney;  Mock, Thomas;  Batabyal, Subrata;  Ni, Aiguo;  Mohanty, Samarendra;  Han, Zongchao;  Farjo, Rafal;  Forster, Michael J.;  Swaroop, Anand;  Chavala, Sai H.
收藏  |  浏览/下载:88/0  |  提交时间:2020/07/03

CRISPR-based nucleic acid detection is used in a platform that can simultaneously detect 169 human-associated viruses in multiple samples, providing scalable, multiplexed pathogen detection aimed at routine surveillance for public health.


The great majority of globally circulating pathogens go undetected, undermining patient care and hindering outbreak preparedness and response. To enable routine surveillance and comprehensive diagnostic applications, there is a need for detection technologies that can scale to test many samples(1-3)while simultaneously testing for many pathogens(4-6). Here, we develop Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (CARMEN), a platform for scalable, multiplexed pathogen detection. In the CARMEN platform, nanolitre droplets containing CRISPR-based nucleic acid detection reagents(7)self-organize in a microwell array(8)to pair with droplets of amplified samples, testing each sample against each CRISPR RNA (crRNA) in replicate. The combination of CARMEN and Cas13 detection (CARMEN-Cas13) enables robust testing of more than 4,500 crRNA-target pairs on a single array. Using CARMEN-Cas13, we developed a multiplexed assay that simultaneously differentiates all 169 human-associated viruses with at least 10 published genome sequences and rapidly incorporated an additional crRNA to detect the causative agent of the 2020 COVID-19 pandemic. CARMEN-Cas13 further enables comprehensive subtyping of influenza A strains and multiplexed identification of dozens of HIV drug-resistance mutations. The intrinsic multiplexing and throughput capabilities of CARMEN make it practical to scale, as miniaturization decreases reagent cost per test by more than 300-fold. Scalable, highly multiplexed CRISPR-based nucleic acid detection shifts diagnostic and surveillance efforts from targeted testing of high-priority samples to comprehensive testing of large sample sets, greatly benefiting patients and public health(9-11).


  
Global conservation of species' niches 期刊论文
NATURE, 2020, 580 (7802) : 232-+
作者:  Guo, Xiaoyan;  Aviles, Giovanni;  Liu, Yi;  Tian, Ruilin;  Unger, Bret A.;  Lin, Yu-Hsiu T.;  Wiita, Arun P.;  Xu, Ke;  Correia, M. Almira;  Kampmann, Martin
收藏  |  浏览/下载:69/0  |  提交时间:2020/07/03

Environmental change is rapidly accelerating, and many species will need to adapt to survive(1). Ensuring that protected areas cover populations across a broad range of environmental conditions could safeguard the processes that lead to such adaptations(1-3). However, international conservation policies have largely neglected these considerations when setting targets for the expansion of protected areas(4). Here we show that-of 19,937 vertebrate species globally(5-8)-the representation of environmental conditions across their habitats in protected areas (hereafter, niche representation) is inadequate for 4,836 (93.1%) amphibian, 8,653 (89.5%) bird and 4,608 (90.9%) terrestrial mammal species. Expanding existing protected areas to cover these gaps would encompass 33.8% of the total land surface-exceeding the current target of 17% that has been adopted by governments. Priority locations for expanding the system of protected areas to improve niche representation occur in global biodiversity hotspots(9), including Colombia, Papua New Guinea, South Africa and southwest China, as well as across most of the major land masses of the Earth. Conversely, we also show that planning for the expansion of protected areas without explicitly considering environmental conditions would marginally reduce the land area required to 30.7%, but that this would lead to inadequate niche representation for 7,798 (39.1%) species. As the governments of the world prepare to renegotiate global conservation targets, policymakers have the opportunity to help to maintain the adaptive potential of species by considering niche representation within protected areas(1,2).


Protected areas would need to expand to 33.8% of the total land surface to adequately represent environmental conditions across the habitats of amphibians, birds and terrestrial mammals, far exceeding the current 17% target.


  
A tale of two voles: The challenge of the commonness-rarity continuum in conservation planning. Reply to comments 期刊论文
FOREST ECOLOGY AND MANAGEMENT, 2019, 451
作者:  Rosenberg, Daniel K.
收藏  |  浏览/下载:19/0  |  提交时间:2019/11/27
Arborimus longicaudus  Commonness  Conservation priority  Myodes californicus  Northwest Forest Plan  Oregon  Rarity  Western red-backed vole  Red tree vole  
The role of seasonal timing and phenological shifts for species coexistence 期刊论文
ECOLOGY LETTERS, 2019, 22 (8) : 1324-1338
作者:  Rudolf, Volker H. W.
收藏  |  浏览/下载:15/0  |  提交时间:2019/11/27
Climate change  coexistence  community dynamics  competition  mismatch  phenology  priority effect  seasonal variation