GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
Population flow drives spatio-temporal distribution of COVID-19 in China 期刊论文
NATURE, 2020
作者:  Fernandez, Diego Carlos;  Komal, Ruchi;  Langel, Jennifer;  Ma, Jun;  Duy, Phan Q.;  Penzo, Mario A.;  Zhao, Haiqing;  Hattar, Samer
收藏  |  浏览/下载:85/0  |  提交时间:2020/07/03

Sudden, large-scale and diffuse human migration can amplify localized outbreaks of disease into widespread epidemics(1-4). Rapid and accurate tracking of aggregate population flows may therefore be epidemiologically informative. Here we use 11,478,484 counts of mobile phone data from individuals leaving or transiting through the prefecture of Wuhan between 1 January and 24 January 2020 as they moved to 296 prefectures throughout mainland China. First, we document the efficacy of quarantine in ceasing movement. Second, we show that the distribution of population outflow from Wuhan accurately predicts the relative frequency and geographical distribution of infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) until 19 February 2020, across mainland China. Third, we develop a spatio-temporal '  risk source'  model that leverages population flow data (which operationalize the risk that emanates from epidemic epicentres) not only to forecast the distribution of confirmed cases, but also to identify regions that have a high risk of transmission at an early stage. Fourth, we use this risk source model to statistically derive the geographical spread of COVID-19 and the growth pattern based on the population outflow from Wuhan  the model yields a benchmark trend and an index for assessing the risk of community transmission of COVID-19 over time for different locations. This approach can be used by policy-makers in any nation with available data to make rapid and accurate risk assessments and to plan the allocation of limited resources ahead of ongoing outbreaks.


Modelling of population flows in China enables the forecasting of the distribution of confirmed cases of COVID-19 and the identification of areas at high risk of SARS-CoV-2 transmission at an early stage.


  
Classification with a disordered dopantatom network in silicon 期刊论文
NATURE, 2020, 577 (7790) : 341-+
作者:  Vagnozzi, Ronald J.;  Maillet, Marjorie;  Sargent, Michelle A.;  Khalil, Hadi;  Johansen, Anne Katrine Z.;  Schwanekamp, Jennifer A.;  York, Allen J.;  Huang, Vincent;  Nahrendorf, Matthias;  Sadayappan, Sakthivel;  Molkentin, Jeffery D.
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Classification is an important task at which both biological and artificial neural networks excel(1,2). In machine learning, nonlinear projection into a high-dimensional feature space can make data linearly separable(3,4), simplifying the classification of complex features. Such nonlinear projections are computationally expensive in conventional computers. A promising approach is to exploit physical materials systems that perform this nonlinear projection intrinsically, because of their high computational density(5), inherent parallelism and energy efficiency(6,7). However, existing approaches either rely on the systems'  time dynamics, which requires sequential data processing and therefore hinders parallel computation(5,6,8), or employ large materials systems that are difficult to scale up(7). Here we use a parallel, nanoscale approach inspired by filters in the brain(1) and artificial neural networks(2) to perform nonlinear classification and feature extraction. We exploit the nonlinearity of hopping conduction(9-11) through an electrically tunable network of boron dopant atoms in silicon, reconfiguring the network through artificial evolution to realize different computational functions. We first solve the canonical two-input binary classification problem, realizing all Boolean logic gates(12) up to room temperature, demonstrating nonlinear classification with the nanomaterial system. We then evolve our dopant network to realize feature filters(2) that can perform four-input binary classification on the Modified National Institute of Standards and Technology handwritten digit database. Implementation of our material-based filters substantially improves the classification accuracy over that of a linear classifier directly applied to the original data(13). Our results establish a paradigm of silicon-based electronics for smallfootprint and energy-efficient computation(14).


  
Bridging practices, institutions, and landscapes through a scale-based approach for research and practice: A case study of a business association in South India 期刊论文
ECOLOGICAL ECONOMICS, 2019, 160: 240-250
作者:  Asokan, Vivek Anand;  Yarime, Masaru;  Onuki, Motoharu
收藏  |  浏览/下载:20/0  |  提交时间:2019/11/26
Sustainability science  Corporate responsibility  Scale-based approach  Ecosystems  Business association