GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
Science Advances载文挑战生态学中的经典演替理论 快报文章
资源环境快报,2023年第19期
作者:  董利苹
Microsoft Word(22Kb)  |  收藏  |  浏览/下载:529/0  |  提交时间:2023/10/16
Six Decades Of Succession  Ecosystem Temporal Stability  Scale-dependent  Changes  
Local and global consequences of reward-evoked striatal dopamine release 期刊论文
NATURE, 2020, 580 (7802) : 239-+
作者:  Wagner, Felix R.;  Dienemann, Christian;  Wang, Haibo;  Stuetzer, Alexandra;  Tegunov, Dimitry;  Urlaub, Henning;  Cramer, Patrick
收藏  |  浏览/下载:33/0  |  提交时间:2020/07/03

The neurotransmitter dopamine is required for the reinforcement of actions by rewarding stimuli(1). Neuroscientists have tried to define the functions of dopamine in concise conceptual terms(2), but the practical implications of dopamine release depend on its diverse brain-wide consequences. Although molecular and cellular effects of dopaminergic signalling have been extensively studied(3), the effects of dopamine on larger-scale neural activity profiles are less well-understood. Here we combine dynamic dopamine-sensitive molecular imaging(4) and functional magnetic resonance imaging to determine how striatal dopamine release shapes local and global responses to rewarding stimulation in rat brains. We find that dopamine consistently alters the duration, but not the magnitude, of stimulus responses across much of the striatum, via quantifiable postsynaptic effects that vary across subregions. Striatal dopamine release also potentiates a network of distal responses, which we delineate using neurochemically dependent functional connectivity analyses. Hot spots of dopaminergic drive notably include cortical regions that are associated with both limbic and motor function. Our results reveal distinct neuromodulatory actions of striatal dopamine that extend well beyond its sites of peak release, and that result in enhanced activation of remote neural populations necessary for the performance of motivated actions. Our findings also suggest brain-wide biomarkers of dopaminergic function and could provide a basis for the improved interpretation of neuroimaging results that are relevant to learning and addiction.


Molecular and functional magnetic resonance imaging in the rat reveals distinct neuromodulatory effects of striatal dopamine that extend beyond peak release sites and activate remote neural populations necessary for performing motivated actions.


  
NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly 期刊论文
NATURE, 2020, 578 (7795) : 461-+
作者:  Fruchart, Michel;  Zhou, Yujie;  Vitelli, Vincenzo
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

Eukaryotic cell biology depends on cullin-RING E3 ligase (CRL)-catalysed protein ubiquitylation(1), which is tightly controlled by the modification of cullin with the ubiquitin-like protein NEDD8(2-6). However, how CRLs catalyse ubiquitylation, and the basis of NEDD8 activation, remain unknown. Here we report the cryo-electron microscopy structure of a chemically trapped complex that represents the ubiquitylation intermediate, in which the neddylated CRL1(beta-TRCP) promotes the transfer of ubiquitin from the E2 ubiquitin-conjugating enzyme UBE2D to its recruited substrate, phosphorylated I kappa B alpha. NEDD8 acts as a nexus that binds disparate cullin elements and the RING-activated ubiquitin-linked UBE2D. Local structural remodelling of NEDD8 and large-scale movements of CRL domains converge to juxtapose the substrate and the ubiquitylation active site. These findings explain how a distinctive ubiquitin-like protein alters the functions of its targets, and show how numerous NEDD8-dependent interprotein interactions and conformational changes synergistically configure a catalytic CRL architecture that is both robust, to enable rapid ubiquitylation of the substrate, and fragile, to enable the subsequent functions of cullin-RING proteins.


A cryo-electron microscopy structure provides insights into the activation of cullin-RING E3 ligases by NEDD8 and the consequent catalysis of ubiquitylation reactions.