GSTDTAP

浏览/检索结果: 共26条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
澳大利亚科学院发布《澳大利亚地球系统科学十年计划(2024—2033)》 快报文章
地球科学快报,2024年第23期
作者:  刘文浩
Microsoft Word(21Kb)  |  收藏  |  浏览/下载:519/0  |  提交时间:2024/12/10
Australian Academy of Science  National Committee for Earth System Science, NCESS  A decadal plan for Australian Earth system science 2024–2033  
IOC召开第 31 届大会总结海洋科学进展并提出新战略 快报文章
资源环境快报,2021年第15期
作者:  薛明媚,王金平
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:443/0  |  提交时间:2021/08/16
UN Decade of Ocean Science for Sustainable Development  Tsunami Early Warning  
UNESCO-IOC正式宣布六十余项“海洋十年”行动计划 快报文章
资源环境快报,2021年第12期
作者:  薛明媚,王金平
Microsoft Word(28Kb)  |  收藏  |  浏览/下载:436/3  |  提交时间:2021/06/30
UN Decade of Ocean Science for Sustainable Development  UNESCO-IOC  Ocean Science  
Localization and delocalization of light in photonic moire lattices 期刊论文
NATURE, 2020, 577 (7788) : 42-+
作者:  Wang, Peng;  Zheng, Yuanlin;  Chen, Xianfeng;  Huang, Changming;  Kartashov, Yaroslav V.;  Torner, Lluis;  Konotop, Vladimir V.;  Ye, Fangwei
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

Moire lattices consist of two superimposed identical periodic structures with a relative rotation angle. Moire lattices have several applications in everyday life, including artistic design, the textile industry, architecture, image processing, metrology and interferometry. For scientific studies, they have been produced using coupled graphene-hexagonal boron nitride monolayers(1,2), graphene-graphene layers(3,4) and graphene quasicrystals on a silicon carbide surface(5). The recent surge of interest in moire lattices arises from the possibility of exploring many salient physical phenomena in such systems  examples include commensurable-incommensurable transitions and topological defects(2), the emergence of insulating states owing to band flattening(3,6), unconventional superconductivity(4) controlled by the rotation angle(7,8), the quantum Hall effect(9), the realization of non-Abelian gauge potentials(10) and the appearance of quasicrystals at special rotation angles(11). A fundamental question that remains unexplored concerns the evolution of waves in the potentials defined by moire lattices. Here we experimentally create two-dimensional photonic moire lattices, which-unlike their material counterparts-have readily controllable parameters and symmetry, allowing us to explore transitions between structures with fundamentally different geometries (periodic, general aperiodic and quasicrystal). We observe localization of light in deterministic linear lattices that is based on flatband physics(6), in contrast to previous schemes based on light diffusion in optical quasicrystals(12), where disorder is required(13) for the onset of Anderson localization(14) (that is, wave localization in random media). Using commensurable and incommensurable moire patterns, we experimentally demonstrate the twodimensional localization-delocalization transition of light. Moire lattices may feature an almost arbitrary geometry that is consistent with the crystallographic symmetry groups of the sublattices, and therefore afford a powerful tool for controlling the properties of light patterns and exploring the physics of periodic-aperiodic phase transitions and two-dimensional wavepacket phenomena relevant to several areas of science, including optics, acoustics, condensed matter and atomic physics.


  
Quantum entanglement between an atom and a molecule 期刊论文
NATURE, 2020, 581 (7808) : 273-+
作者:  Trisos, Christopher H.;  Merow, Cory;  Pigot, Alex L.
收藏  |  浏览/下载:42/0  |  提交时间:2020/07/03

Conventional information processors convert information between different physical carriers for processing, storage and transmission. It seems plausible that quantum information will also be held by different physical carriers in applications such as tests of fundamental physics, quantum enhanced sensors and quantum information processing. Quantum controlled molecules, in particular, could transduce quantum information across a wide range of quantum bit (qubit) frequencies-from a few kilohertz for transitions within the same rotational manifold(1), a few gigahertz for hyperfine transitions, a few terahertz for rotational transitions, to hundreds of terahertz for fundamental and overtone vibrational and electronic transitions-possibly all within the same molecule. Here we demonstrate entanglement between the rotational states of a (CaH+)-Ca-40 molecular ion and the internal states of a Ca-40(+) atomic ion(2). We extend methods used in quantum logic spectroscopy(1,3) for pure-state initialization, laser manipulation and state readout of the molecular ion. The quantum coherence of the Coulomb coupled motion between the atomic and molecular ions enables subsequent entangling manipulations. The qubit addressed in the molecule has a frequency of either 13.4 kilohertz(1) or 855 gigahertz(3), highlighting the versatility of molecular qubits. Our work demonstrates how molecules can transduce quantum information between qubits with different frequencies to enable hybrid quantum systems. We anticipate that our method of quantum control and measurement of molecules will find applications in quantum information science, quantum sensors, fundamental and applied physics, and controlled quantum chemistry.


Quantum entanglement is realized between rotational levels of a molecular ion with energy differences spanning several orders of magnitude and long-lived internal states of a single atomic ion.


  
Coming at cancer from all angles 期刊论文
NATURE, 2020, 580 (7804) : S24-S27
作者:  Ghasemi, Ali;  De Palma, Michele
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

The search for disease mechanisms and treatments is one of the biggest collaborative efforts in science. These researchers are significant contributors.


The search for disease mechanisms and treatments is one of the biggest collaborative efforts in science. These researchers are significant contributors.


  
Experimental demonstration of memory-enhanced quantum communication 期刊论文
NATURE, 2020
作者:  Quinn, Robert A.;  Melnik, Alexey, V;  Vrbanac, Alison;  Fu, Ting;  Patras, Kathryn A.;  Christy, Mitchell P.;  Bodai, Zsolt;  Belda-Ferre, Pedro;  Tripathi, Anupriya;  Chung, Lawton K.;  Downes, Michael;  Welch, Ryan D.;  Quinn, Melissa;  Humphrey, Greg;  Panitchpakdi, Morgan;  Weldon, Kelly C.;  Aksenov, Alexander;  da Silva, Ricardo;  Avila-Pacheco, Julian;  Clish, Clary;  Bae, Sena;  Mallick, Himel;  Franzosa, Eric A.;  Lloyd-Price, Jason;  Bussell, Robert;  Thron, Taren;  Nelson, Andrew T.;  Wang, Mingxun;  Leszczynski, Eric;  Vargas, Fernando;  Gauglitz, Julia M.;  Meehan, Michael J.;  Gentry, Emily;  Arthur, Timothy D.;  Komor, Alexis C.;  Poulsen, Orit;  Boland, Brigid S.;  Chang, John T.;  Sandborn, William J.;  Lim, Meerana;  Garg, Neha;  Lumeng, Julie C.;  Xavier, Ramnik J.;  Kazmierczak, Barbara, I;  Jain, Ruchi;  Egan, Marie;  Rhee, Kyung E.;  Ferguson, David;  Raffatellu, Manuela;  Vlamakis, Hera;  Haddad, Gabriel G.;  Siegel, Dionicio;  Huttenhower, Curtis;  Mazmanian, Sarkis K.;  Evans, Ronald M.;  Nizet, Victor;  Knight, Rob;  Dorrestein, Pieter C.
收藏  |  浏览/下载:66/0  |  提交时间:2020/07/03

The ability to communicate quantum information over long distances is of central importance in quantum science and engineering(1). Although some applications of quantum communication such as secure quantum key distribution(2,3) are already being successfully deployed(4-7), their range is currently limited by photon losses and cannot be extended using straightforward measure-and-repeat strategies without compromising unconditional security(8). Alternatively, quantum repeaters(9), which utilize intermediate quantum memory nodes and error correction techniques, can extend the range of quantum channels. However, their implementation remains an outstanding challenge(10-16), requiring a combination of efficient and high-fidelity quantum memories, gate operations, and measurements. Here we use a single solid-state spin memory integrated in a nanophotonic diamond resonator(17-19) to implement asynchronous photonic Bell-state measurements, which are a key component of quantum repeaters. In a proof-of-principle experiment, we demonstrate high-fidelity operation that effectively enables quantum communication at a rate that surpasses the ideal loss-equivalent direct-transmission method while operating at megahertz clock speeds. These results represent a crucial step towards practical quantum repeaters and large-scale quantum networks(20,21).


A solid-state spin memory is used to demonstrate quantum repeater functionality, which has the potential to overcome photon losses involved in long-distance transmission of quantum information.


  
Coherent electrical control of a single high-spin nucleus in silicon 期刊论文
NATURE, 2020, 579 (7798) : 205-+
作者:  Dedoussi, Irene C.;  Eastham, Sebastian D.;  Monier, Erwan;  Barrett, Steven R. H.
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/03

Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, for example, in chemistry, medicine, materials science and mining. Nuclear spins also featured in early proposals for solid-state quantum computers(1) and demonstrations of quantum search(2) and factoring(3) algorithms. Scaling up such concepts requires controlling individual nuclei, which can be detected when coupled to an electron(4-6). However, the need to address the nuclei via oscillating magnetic fields complicates their integration in multi-spin nanoscale devices, because the field cannot be localized or screened. Control via electric fields would resolve this problem, but previous methods(7-9) relied on transducing electric signals into magnetic fields via the electron-nuclear hyperfine interaction, which severely affects nuclear coherence. Here we demonstrate the coherent quantum control of a single Sb-123 (spin-7/2) nucleus using localized electric fields produced within a silicon nanoelectronic device. The method exploits an idea proposed in 1961(10) but not previously realized experimentally with a single nucleus. Our results are quantitatively supported by a microscopic theoretical model that reveals how the purely electrical modulation of the nuclear electric quadrupole interaction results in coherent nuclear spin transitions that are uniquely addressable owing to lattice strain. The spin dephasing time, 0.1 seconds, is orders of magnitude longer than those obtained by methods that require a coupled electron spin to achieve electrical driving. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors and hybrid spin-mechanical quantum systems using all-electrical controls. Integrating electrically controllable nuclei with quantum dots(11,12) could pave the way to scalable, nuclear- and electron-spin-based quantum computers in silicon that operate without the need for oscillating magnetic fields.


  
Quantum Legacies: Dispatches from an Uncertain World 期刊论文
NATURE, 2020, 580 (7802) : 183-184
作者:  Powell, Kendall
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/03

Up close, the all too human business of doing science is messy. By Sabine Hossenfelder.


  
Co-producing science for sustainability: Can funding change knowledge use? 期刊论文
GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2020, 60
作者:  Arnott, James C.;  Neuenfeldt, Rachel J.;  Lemos, Maria Carmen
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/02
Science-practice interaction  Science policy  Environmental management  Coastal management  Research utilization  Societal impact of science  Co-production  Science funding