GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
A developmental landscape of 3D-cultured human pre-gastrulation embryos 期刊论文
NATURE, 2020, 577 (7791) : 537-+
作者:  Xiang, Lifeng;  Yin, Yu;  Zheng, Yun;  Ma, Yanping;  Li, Yonggang;  Zhao, Zhigang;  Guo, Junqiang;  Ai, Zongyong;  Niu, Yuyu;  Duan, Kui;  He, Jingjing;  Ren, Shuchao;  Wu, Dan;  Bai, Yun;  Shang, Zhouchun;  Dai, Xi;  Ji, Weizhi;  Li, Tianqing
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

Our understanding of how human embryos develop before gastrulation, including spatial self-organization and cell type ontogeny, remains limited by available two-dimensional technological platforms(1,2) that do not recapitulate the in vivo conditions(3-5). Here we report a three-dimensional (3D) blastocyst-culture system that enables human blastocyst development up to the primitive streak anlage stage. These 3D embryos mimic developmental landmarks and 3D architectures in vivo, including the embryonic disc, amnion, basement membrane, primary and primate unique secondary yolk sac, formation of anterior-posterior polarity and primitive streak anlage. Using single-cell transcriptome profiling, we delineate ontology and regulatory networks that underlie the segregation of epiblast, primitive endoderm and trophoblast. Compared with epiblasts, the amniotic epithelium shows unique and characteristic phenotypes. After implantation, specific pathways and transcription factors trigger the differentiation of cytotrophoblasts, extravillous cytotrophoblasts and syncytiotrophoblasts. Epiblasts undergo a transition to pluripotency upon implantation, and the transcriptome of these cells is maintained until the generation of the primitive streak anlage. These developmental processes are driven by different pluripotency factors. Together, findings from our 3D-culture approach help to determine the molecular and morphogenetic developmental landscape that occurs during human embryogenesis.


A 3D culture system to model human embryonic development, together with single-cell transcriptome profiling, provides insights into the molecular developmental landscape during human post-implantation embryogenesis.


  
Bacterial coexistence driven by motility and spatial competition 期刊论文
NATURE, 2020, 578 (7796) : 588-+
作者:  Micke, P.;  Leopold, T.;  King, S. A.;  Benkler, E.;  Spiess, L. J.;  Schmoeger, L.;  Schwarz, M.;  Crespo Lopez-Urrutia, J. R.;  Schmidt, P. O.
收藏  |  浏览/下载:34/0  |  提交时间:2020/07/03

Elucidating elementary mechanisms that underlie bacterial diversity is central to ecology(1,2) and microbiome research(3). Bacteria are known to coexist by metabolic specialization(4), cooperation(5) and cyclic warfare(6-8). Many species are also motile(9), which is studied in terms of mechanism(10,11), benefit(12,13), strategy(14,15), evolution(16,17) and ecology(18,19). Indeed, bacteria often compete for nutrient patches that become available periodically or by random disturbances(2,20,21). However, the role of bacterial motility in coexistence remains unexplored experimentally. Here we show that-for mixed bacterial populations that colonize nutrient patches-either population outcompetes the other when low in relative abundance. This inversion of the competitive hierarchy is caused by active segregation and spatial exclusion within the patch: a small fast-moving population can outcompete a large fast-growing population by impeding its migration into the patch, while a small fast-growing population can outcompete a large fast-moving population by expelling it from the initial contact area. The resulting spatial segregation is lost for weak growth-migration trade-offs and a lack of virgin space, but is robust to population ratio, density and chemotactic ability, and is observed in both laboratory and wild strains. These findings show that motility differences and their trade-offs with growth are sufficient to promote diversity, and suggest previously undescribed roles for motility in niche formation and collective expulsion-containment strategies beyond individual search and survival.


In mixed bacterial populations that colonize nutrient patches, a growth-migration trade-off can lead to spatial exclusion that provides an advantage to populations that become rare, thereby stabilizing the community.


  
Measuring Environmental Inequalities: Insights from the Residential Segregation Literature 期刊论文
ECOLOGICAL ECONOMICS, 2019, 164
作者:  Schaeffer, Y.;  Tivadar, M.
收藏  |  浏览/下载:15/0  |  提交时间:2019/11/27
Environmental justice  Environmental equity  Spatial segregation  Monte Carlo simulations  Jackknife simulations  France  
Fine-scale intraspecific interactions and environmental heterogeneity drive the spatial structure in old-growth stands of a dioecious plant 期刊论文
FOREST ECOLOGY AND MANAGEMENT, 2018, 425: 92-99
作者:  Erfanifard, Yousef;  Hong Hai Nguyen;  Schmidt, John Paul;  Rayburn, Andrew
收藏  |  浏览/下载:8/0  |  提交时间:2019/04/09
Pistacia atlantica  Point pattern analysis  Spatial segregation of the sexes  Zagros