GSTDTAP

浏览/检索结果: 共28条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Origin of complexity in haemoglobin evolution 期刊论文
NATURE, 2020
作者:  Cheema, Suraj S.;  Kwon, Daewoong;  Shanker, Nirmaan;  dos Reis, Roberto;  Hsu, Shang-Lin;  Xiao, Jun;  Zhang, Haigang;  Wagner, Ryan;  Datar, Adhiraj;  McCarter, Margaret R.;  Serrao, Claudy R.;  Yadav, Ajay K.;  Karbasian, Golnaz;  Hsu, Cheng-Hsiang;  Tan, Ava J.;  Wang, Li-Chen;  Thakare, Vishal;  Zhang, Xiang;  Mehta, Apurva;  Karapetrova, Evguenia;  Chopdekar, Rajesh, V;  Shafer, Padraic;  Arenholz, Elke;  Hu, Chenming;  Proksch, Roger;  Ramesh, Ramamoorthy;  Ciston, Jim;  Salahuddin, Sayeef
收藏  |  浏览/下载:79/0  |  提交时间:2020/07/03

Most proteins associate into multimeric complexes with specific architectures(1,2), which often have functional properties such as cooperative ligand binding or allosteric regulation(3). No detailed knowledge is available about how any multimer and its functions arose during evolution. Here we use ancestral protein reconstruction and biophysical assays to elucidate the origins of vertebrate haemoglobin, a heterotetramer of paralogous alpha- and beta-subunits that mediates respiratory oxygen transport and exchange by cooperatively binding oxygen with moderate affinity. We show that modern haemoglobin evolved from an ancient monomer and characterize the historical '  missing link'  through which the modern tetramer evolved-a noncooperative homodimer with high oxygen affinity that existed before the gene duplication that generated distinct alpha- and beta-subunits. Reintroducing just two post-duplication historical substitutions into the ancestral protein is sufficient to cause strong tetramerization by creating favourable contacts with more ancient residues on the opposing subunit. These surface substitutions markedly reduce oxygen affinity and even confer cooperativity, because an ancient linkage between the oxygen binding site and the multimerization interface was already an intrinsic feature of the protein'  s structure. Our findings establish that evolution can produce new complex molecular structures and functions via simple genetic mechanisms that recruit existing biophysical features into higher-level architectures.


Experimental analysis of reconstructed ancestral globins reveals that haemoglobin'  s complex tetrameric structure and oxygen-binding functions evolved by simple genetic and biophysical mechanisms.


  
Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor 期刊论文
NATURE, 2020, 581 (7807) : 215-+
作者:  Goudeau, Jerome;  Samaddar, Madhuja;  Bohnert, K. Adam;  Kenyon, Cynthia
收藏  |  浏览/下载:39/0  |  提交时间:2020/07/03

A new and highly pathogenic coronavirus (severe acute respiratory syndrome coronavirus-2, SARS-CoV-2) caused an outbreak in Wuhan city, Hubei province, China, starting from December 2019 that quickly spread nationwide and to other countries around the world(1-3). Here, to better understand the initial step of infection at an atomic level, we determined the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 bound to the cell receptor ACE2. The overall ACE2-binding mode of the SARS-CoV-2 RBD is nearly identical to that of the SARS-CoV RBD, which also uses ACE2 as the cell receptor(4). Structural analysis identified residues in the SARS-CoV-2 RBD that are essential for ACE2 binding, the majority of which either are highly conserved or share similar side chain properties with those in the SARS-CoV RBD. Such similarity in structure and sequence strongly indicate convergent evolution between the SARS-CoV-2 and SARS-CoV RBDs for improved binding to ACE2, although SARS-CoV-2 does not cluster within SARS and SARS-related coronaviruses(1-3,5). The epitopes of two SARS-CoV antibodies that target the RBD are also analysed for binding to the SARS-CoV-2 RBD, providing insights into the future identification of cross-reactive antibodies.


  
Olfactory receptor and circuit evolution promote host specialization 期刊论文
NATURE, 2020
作者:  Chen, Tse-An;  Chuu, Chih-Piao;  Tseng, Chien-Chih;  Wen, Chao-Kai;  Wong, H. -S. Philip;  Pan, Shuangyuan;  Li, Rongtan;  Chao, Tzu-Ang;  Chueh, Wei-Chen;  Zhang, Yanfeng;  Fu, Qiang;  Yakobson, Boris I.;  Chang, Wen-Hao;  Li, Lain-Jong
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

The evolution of animal behaviour is poorly understood(1,2). Despite numerous correlations between interspecific divergence in behaviour and nervous system structure and function, demonstrations of the genetic basis of these behavioural differences remain rare(3-5). Here we develop a neurogenetic model, Drosophila sechellia, a species that displays marked differences in behaviour compared to its close cousin Drosophila melanogaster(6,7), which are linked to its extreme specialization on noni fruit (Morinda citrifolia)(8-16). Using calcium imaging, we identify olfactory pathways in D. sechellia that detect volatiles emitted by the noni host. Our mutational analysis indicates roles for different olfactory receptors in long- and short-range attraction to noni, and our cross-species allele-transfer experiments demonstrate that the tuning of one of these receptors is important for species-specific host-seeking. We identify the molecular determinants of this functional change, and characterize their evolutionary origin and behavioural importance. We perform circuit tracing in the D. sechellia brain, and find that receptor adaptations are accompanied by increased sensory pooling onto interneurons as well as species-specific central projection patterns. This work reveals an accumulation of molecular, physiological and anatomical traits that are linked to behavioural divergence between species, and defines a model for investigating speciation and the evolution of the nervous system.


A neurogenetic model, Drosophila sechellia-a relative of Drosophila melanogaster that has developed an extreme specialization for a single host plant-sheds light on the evolution of interspecific differences in behaviour.


  
Parental-to-embryo switch of chromosome organization in early embryogenesis 期刊论文
NATURE, 2020: 142-+
作者:  Kim, Eugene;  Kerssemakers, Jacob;  Shaltiel, Indra A.;  Haering, Christian H.;  Dekker, Cees
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03

Single-cell allelic HiC analysis, combined with allelic gene expression and chromatin states, reveals parent-of-origin-specific dynamics of chromosome organization and gene expression during mouse preimplantation development.


Paternal and maternal epigenomes undergo marked changes after fertilization(1). Recent epigenomic studies have revealed the unusual chromatin landscapes that are present in oocytes, sperm and early preimplantation embryos, including atypical patterns of histone modifications(2-4) and differences in chromosome organization and accessibility, both in gametes(5-8) and after fertilization(5,8-10). However, these studies have led to very different conclusions: the global absence of local topological-associated domains (TADs) in gametes and their appearance in the embryo(8,9) versus the pre-existence of TADs and loops in the zygote(5,11). The questions of whether parental structures can be inherited in the newly formed embryo and how these structures might relate to allele-specific gene regulation remain open. Here we map genomic interactions for each parental genome (including the X chromosome), using an optimized single-cell high-throughput chromosome conformation capture (HiC) protocol(12,13), during preimplantation in the mouse. We integrate chromosome organization with allelic expression states and chromatin marks, and reveal that higher-order chromatin structure after fertilization coincides with an allele-specific enrichment of methylation of histone H3 at lysine 27. These early parental-specific domains correlate with gene repression and participate in parentally biased gene expression-including in recently described, transiently imprinted loci(14). We also find TADs that arise in a non-parental-specific manner during a second wave of genome assembly. These de novo domains are associated with active chromatin. Finally, we obtain insights into the relationship between TADs and gene expression by investigating structural changes to the paternal X chromosome before and during X chromosome inactivation in preimplantation female embryos(15). We find that TADs are lost as genes become silenced on the paternal X chromosome but linger in regions that escape X chromosome inactivation. These findings demonstrate the complex dynamics of three-dimensional genome organization and gene expression during early development.


  
Local forest structure variability increases resilience to wildfire in dry western US coniferous forests 期刊论文
ECOLOGY LETTERS, 2020, 23 (3) : 483-494
作者:  Koontz, Michael J.;  North, Malcolm P.;  Werner, Chhaya M.;  Fick, Stephen E.;  Latimer, Andrew M.
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/02
disturbance  forest  forest structure  resilience  severity  Sierra Nevada  texture analysis  wildfire  
A mechanism of ferritin crystallization revealed by cryo-STEM tomography 期刊论文
NATURE, 2020, 579 (7800) : 540-+
作者:  van Gastel, Nick;  Stegen, Steve;  Eelen, Guy;  Schoors, Sandra;  Carlier, Aurelie;  Daniels, Veerle W.;  Baryawno, Ninib;  Przybylski, Dariusz;  Depypere, Maarten;  Stiers, Pieter-Jan;  Lambrechts, Dennis;  Van Looveren, Riet;  Torrekens, Sophie
收藏  |  浏览/下载:33/0  |  提交时间:2020/07/03

Protein crystallization is important in structural biology, disease research and pharmaceuticals. It has recently been recognized that nonclassical crystallization involving initial formation of an amorphous precursor phase-occurs often in protein, organic and inorganic crystallization processes(1-5). A two-step nucleation theory has thus been proposed, in which initial low-density, solvated amorphous aggregates subsequently densify, leading to nucleation(4,6,7). This view differs from classical nucleation theory, which implies that crystalline nuclei forming in solution have the same density and structure as does the final crystalline state(1). A protein crystallization mechanism involving this classical pathway has recently been observed directly(8). However, a molecular mechanism of nonclassical protein crystallization(9-15) has not been established(9,11,14). To determine the nature of the amorphous precursors and whether crystallization takes place within them (and if so, how order develops at the molecular level), three-dimensional (3D) molecular-level imaging of a crystallization process is required. Here we report cryogenic scanning transmission microscopy tomography of ferritin aggregates at various stages of crystallization, followed by 3D reconstruction using simultaneous iterative reconstruction techniques to provide a 3D picture of crystallization with molecular resolution. As crystalline order gradually increased in the studied aggregates, they exhibited an increase in both order and density from their surface towards their interior. We observed no highly ordered small structures typical of a classical nucleation process, and occasionally we observed several ordered domains emerging within one amorphous aggregate, a phenomenon not predicted by either classical or two-step nucleation theories. Our molecular-level analysis hints at desolvation as the driver of the continuous order-evolution mechanism, a view that goes beyond current nucleation models, yet is consistent with a broad spectrum of protein crystallization mechanisms.


  
Observations of grain-boundary phase transformations in an elemental metal 期刊论文
NATURE, 2020, 579 (7799) : 375-+
作者:  Valente, Luis;  Phillimore, Albert B.;  Melo, Martim;  Warren, Ben H.;  Clegg, Sonya M.;  Havenstein, Katja;  Tiedemann, Ralph;  Illera, Juan Carlos;  Thebaud, Christophe;  Aschenbach, Tina;  Etienne, Rampal S.
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

Atomic-resolution observations combined with simulations show that grain boundaries within elemental copper undergo temperature-induced solid-state phase transformation to different structures  grain boundary phases can also coexist and are kinetically trapped structures.


The theory of grain boundary (the interface between crystallites, GB) structure has a long history(1) and the concept of GBs undergoing phase transformations was proposed 50 years ago(2,3). The underlying assumption was that multiple stable and metastable states exist for different GB orientations(4-6). The terminology '  complexion'  was recently proposed to distinguish between interfacial states that differ in any equilibrium thermodynamic property(7). Different types of complexion and transitions between complexions have been characterized, mostly in binary or multicomponent systems(8-19). Simulations have provided insight into the phase behaviour of interfaces and shown that GB transitions can occur in many material systems(20-24). However, the direct experimental observation and transformation kinetics of GBs in an elemental metal have remained elusive. Here we demonstrate atomic-scale GB phase coexistence and transformations at symmetric and asymmetric [111 over bar ] tilt GBs in elemental copper. Atomic-resolution imaging reveals the coexistence of two different structures at sigma 19b GBs (where sigma 19 is the density of coincident sites and b is a GB variant), in agreement with evolutionary GB structure search and clustering analysis(21,25,26). We also use finite-temperature molecular dynamics simulations to explore the coexistence and transformation kinetics of these GB phases. Our results demonstrate how GB phases can be kinetically trapped, enabling atomic-scale room-temperature observations. Our work paves the way for atomic-scale in situ studies of metallic GB phase transformations, which were previously detected only indirectly(9,15,27-29), through their influence on abnormal grain growth, non-Arrhenius-type diffusion or liquid metal embrittlement.


  
Structure and mechanism of the ER-based glucosyltransferase ALG6 期刊论文
NATURE, 2020, 579 (7799) : 443-+
作者:  van Veen, Sarah;  Martin, Shaun;  Van den Haute, Chris;  Benoy, Veronick;  Lyons, Joseph;  Vanhoutte, Roeland;  Kahler, Jan Pascal;  Decuypere, Jean-Paul;  Gelders, Geraldine;  Lambie, Eric;  Zielich, Jeffrey;  Swinnen, Johannes V.;  Annaert, Wim;  Agostinis, Patrizia;  Ghesquiere, Bart;  Verhelst, Steven;  Baekelandt, Veerle;  Eggermont, Jan;  Vangheluwe, Peter
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

Analyses reveal a previously undescribed transmembrane protein fold in the endoplasmic reticulum-based glucosyltransferase ALG6 and provide a structural basis for understanding the glucose transfer mechanism.


In eukaryotic protein N-glycosylation, a series of glycosyltransferases catalyse the biosynthesis of a dolichylpyrophosphate-linked oligosaccharide before its transfer onto acceptor proteins(1). The final seven steps occur in the lumen of the endoplasmic reticulum (ER) and require dolichylphosphate-activated mannose and glucose as donor substrates(2). The responsible enzymes-ALG3, ALG9, ALG12, ALG6, ALG8 and ALG10-are glycosyltransferases of the C-superfamily (GT-Cs), which are loosely defined as containing membrane-spanning helices and processing an isoprenoid-linked carbohydrate donor substrate(3,4). Here we present the cryo-electron microscopy structure of yeast ALG6 at 3.0 angstrom resolution, which reveals a previously undescribed transmembrane protein fold. Comparison with reported GT-C structures suggests that GT-C enzymes contain a modular architecture with a conserved module and a variable module, each with distinct functional roles. We used synthetic analogues of dolichylphosphate-linked and dolichylpyrophosphate-linked sugars and enzymatic glycan extension to generate donor and acceptor substrates using purified enzymes of the ALG pathway to recapitulate the activity of ALG6 in vitro. A second cryo-electron microscopy structure of ALG6 bound to an analogue of dolichylphosphate-glucose at 3.9 angstrom resolution revealed the active site of the enzyme. Functional analysis of ALG6 variants identified a catalytic aspartate residue that probably acts as a general base. This residue is conserved in the GT-C superfamily. Our results define the architecture of ER-luminal GT-C enzymes and provide a structural basis for understanding their catalytic mechanisms.


  
The structure of human thyroglobulin 期刊论文
NATURE, 2020, 578 (7796) : 627-+
作者:  Golub, Eyal;  Subramanian, Rohit H.;  Esselborn, Julian;  Alberstein, Robert G.;  Bailey, Jake B.;  Chiong, Jerika A.;  Yan, Xiaodong;  Booth, Timothy;  Baker, Timothy S.;  Tezcan, F. Akif
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

The cryo-electron microscopy structure of human thyroglobulin reveals that proximity, flexibility and solvent exposure are key characteristics of its hormonogenic tyrosine pairs, and provides a framework for understanding the formation of thyroid hormones.


Thyroglobulin (TG) is the protein precursor of thyroid hormones, which are essential for growth, development and the control of metabolism in vertebrates(1,2). Hormone synthesis from TG occurs in the thyroid gland via the iodination and coupling of pairs of tyrosines, and is completed by TG proteolysis(3). Tyrosine proximity within TG is thought to enable the coupling reaction but hormonogenic tyrosines have not been clearly identified, and the lack of a three-dimensional structure of TG has prevented mechanistic understanding(4). Here we present the structure of full-length human thyroglobulin at a resolution of approximately 3.5 angstrom, determined by cryo-electron microscopy. We identified all of the hormonogenic tyrosine pairs in the structure, and verified them using site-directed mutagenesis and in vitro hormone-production assays using human TG expressed in HEK293T cells. Our analysis revealed that the proximity, flexibility and solvent exposure of the tyrosines are the key characteristics of hormonogenic sites. We transferred the reaction sites from TG to an engineered tyrosine donor-acceptor pair in the unrelated bacterial maltose-binding protein (MBP), which yielded hormone production with an efficiency comparable to that of TG. Our study provides a framework to further understand the production and regulation of thyroid hormones.


  
Dualities and non-Abelian mechanics 期刊论文
NATURE, 2020, 577 (7792) : 636-+
作者:  Song, Xinyang;  Sun, Ximei;  Oh, Sungwhan F.;  Wu, Meng;  Zhang, Yanbo;  Zheng, Wen;  Geva-Zatorsky, Naama;  Jupp, Ray;  Mathis, Diane;  Benoist, Christophe;  Kasper, Dennis L.
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

Dualities-mathematical mappings between different systems-can act as hidden symmetries that enable materials design beyond that suggested by crystallographic space groups.


Dualities are mathematical mappings that reveal links between apparently unrelated systems in virtually every branch of physics(1-8). Systems mapped onto themselves by a duality transformation are called self-dual and exhibit remarkable properties, as exemplified by the scale invariance of an Ising magnet at the critical point. Here we show how dualities can enhance the symmetries of a dynamical matrix (or Hamiltonian), enabling the design of metamaterials with emergent properties that escape a standard group theory analysis. As an illustration, we consider twisted kagome lattices(9-15), reconfigurable mechanical structures that change shape by means of a collapse mechanism(9). We observe that pairs of distinct configurations along the mechanism exhibit the same vibrational spectrum and related elastic moduli. We show that these puzzling properties arise from a duality between pairs of configurations on either side of a mechanical critical point. The critical point corresponds to a self-dual structure with isotropic elasticity even in the absence of spatial symmetries and a twofold-degenerate spectrum over the entire Brillouin zone. The spectral degeneracy originates from a version of Kramers'  theorem(16,17) in which fermionic time-reversal invariance is replaced by a hidden symmetry emerging at the self-dual point. The normal modes of the self-dual systems exhibit non-Abelian geometric phases(18,19) that affect the semiclassical propagation of wavepackets(20), leading to non-commuting mechanical responses. Our results hold promise for holonomic computation(21) and mechanical spintronics by allowing on-the-fly manipulation of synthetic spins carried by phonons.