GSTDTAP

浏览/检索结果: 共54条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
世界资源研究所提出农业甲烷减排的综合技术指南 快报文章
气候变化快报,2025年第6期
作者:  刘莉娜
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:393/0  |  提交时间:2025/03/20
Methane  Agriculture  Technological  
英国发布碳捕集、利用与封存行业的愿景 快报文章
气候变化快报,2024年第1期
作者:  王田宇 刘燕飞
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:466/1  |  提交时间:2024/01/06
Carbon Capture Usage and Storage (CCUS), Economic Growth, Environmental Protection, Technological Development, Government Strategy  
PLoS Climate提出评估新兴低碳技术机遇的7项原则 快报文章
气候变化快报,2023年第15期
作者:  董利苹
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:531/0  |  提交时间:2023/08/07
Seven Key Principles  Emerging Low-Carbon Technological Opportunities  Climate Change Mitigation Action  
英国政府向核能和氢能创新提供1.02亿英镑支持 快报文章
气候变化快报,2023年第1期
作者:  迪里努尔,刘燕飞
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:667/1  |  提交时间:2023/01/05
Nuclear  Hydrogen  technological innovation  low-carbon hydrogen  
A developmental landscape of 3D-cultured human pre-gastrulation embryos 期刊论文
NATURE, 2020, 577 (7791) : 537-+
作者:  Xiang, Lifeng;  Yin, Yu;  Zheng, Yun;  Ma, Yanping;  Li, Yonggang;  Zhao, Zhigang;  Guo, Junqiang;  Ai, Zongyong;  Niu, Yuyu;  Duan, Kui;  He, Jingjing;  Ren, Shuchao;  Wu, Dan;  Bai, Yun;  Shang, Zhouchun;  Dai, Xi;  Ji, Weizhi;  Li, Tianqing
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

Our understanding of how human embryos develop before gastrulation, including spatial self-organization and cell type ontogeny, remains limited by available two-dimensional technological platforms(1,2) that do not recapitulate the in vivo conditions(3-5). Here we report a three-dimensional (3D) blastocyst-culture system that enables human blastocyst development up to the primitive streak anlage stage. These 3D embryos mimic developmental landmarks and 3D architectures in vivo, including the embryonic disc, amnion, basement membrane, primary and primate unique secondary yolk sac, formation of anterior-posterior polarity and primitive streak anlage. Using single-cell transcriptome profiling, we delineate ontology and regulatory networks that underlie the segregation of epiblast, primitive endoderm and trophoblast. Compared with epiblasts, the amniotic epithelium shows unique and characteristic phenotypes. After implantation, specific pathways and transcription factors trigger the differentiation of cytotrophoblasts, extravillous cytotrophoblasts and syncytiotrophoblasts. Epiblasts undergo a transition to pluripotency upon implantation, and the transcriptome of these cells is maintained until the generation of the primitive streak anlage. These developmental processes are driven by different pluripotency factors. Together, findings from our 3D-culture approach help to determine the molecular and morphogenetic developmental landscape that occurs during human embryogenesis.


A 3D culture system to model human embryonic development, together with single-cell transcriptome profiling, provides insights into the molecular developmental landscape during human post-implantation embryogenesis.


  
英研究指出过分依赖新技术不能解决气候变化难题 快报文章
气候变化快报,2020年第10期
作者:  曾静静
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:366/0  |  提交时间:2020/05/19
technological promises  climate change targets  co-evolution  
OECD发布基于专利数据的水相关技术革新趋势报告 快报文章
资源环境快报,2020年第8期
作者:  吴秀平
Microsoft Word(19Kb)  |  收藏  |  浏览/下载:363/0  |  提交时间:2020/04/30
Patent analysis  water resources  technological innovation  
The proteome landscape of the kingdoms of life 期刊论文
NATURE, 2020
作者:  Arzi, Anat;  Rozenkrantz, Liron;  Gorodisky, Lior;  Rozenkrantz, Danit;  Holtzman, Yael;  Ravia, Aharon;  Bekinschtein, Tristan A.;  Galperin, Tatyana;  Krimchansky, Ben-Zion;  Cohen, Gal;  Oksamitni, Anna;  Aidinoff, Elena;  Sacher, Yaron;  Sobel, Noam
收藏  |  浏览/下载:41/0  |  提交时间:2020/07/03

Proteins carry out the vast majority of functions in all biological domains, but for technological reasons their large-scale investigation has lagged behind the study of genomes. Since the first essentially complete eukaryotic proteome was reported(1), advances in mass-spectrometry-based proteomics(2)have enabled increasingly comprehensive identification and quantification of the human proteome(3-6). However, there have been few comparisons across species(7,8), in stark contrast with genomics initiatives(9). Here we use an advanced proteomics workflow-in which the peptide separation step is performed by a microstructured and extremely reproducible chromatographic system-for the in-depth study of 100 taxonomically diverse organisms. With two million peptide and 340,000 stringent protein identifications obtained in a standardized manner, we double the number of proteins with solid experimental evidence known to the scientific community. The data also provide a large-scale case study for sequence-based machine learning, as we demonstrate by experimentally confirming the predicted properties of peptides fromBacteroides uniformis. Our results offer a comparative view of the functional organization of organisms across the entire evolutionary range. A remarkably high fraction of the total proteome mass in all kingdoms is dedicated to protein homeostasis and folding, highlighting the biological challenge of maintaining protein structure in all branches of life. Likewise, a universally high fraction is involved in supplying energy resources, although these pathways range from photosynthesis through iron sulfur metabolism to carbohydrate metabolism. Generally, however, proteins and proteomes are remarkably diverse between organisms, and they can readily be explored and functionally compared at www.proteomesoflife.org.


  
Massively parallel coherent laser ranging using a soliton microcomb 期刊论文
NATURE, 2020, 581 (7807) : 164-+
作者:  Casanova, Emmanuelle;  Knowles, Timothy D. J.;  Bayliss, Alex;  Dunne, Julie;  Baranski, Marek Z.;  Denaire, Anthony;  Lefranc, Philippe;  di Lernia, Savino;  Roffet-Salque, Melanie;  Smyth, Jessica;  Barclay, Alistair;  Gillard, Toby;  Classen, Erich;  Coles, Bryony;  Ilett, Michael;  Jeunesse, Christian;  Krueger, Marta;  Marciniak, Arkadiusz;  Minnitt, Steve;  Rotunno, Rocco;  van de Velde, Pieter;  van Wijk, Ivo;  Cotton, Jonathan;  Daykin, Andy;  Evershed, Richard P.
收藏  |  浏览/下载:63/0  |  提交时间:2020/07/03

Coherent ranging, also known as frequency-modulated continuous-wave (FMCW) laser-based light detection and ranging (lidar)(1) is used for long-range three-dimensional distance and velocimetry in autonomous driving(2,3). FMCW lidar maps distance to frequency(4,5) using frequency-chirped waveforms and simultaneously measures the Doppler shift of the reflected laser light, similar to sonar or radar(6,7) and coherent detection prevents interference from sunlight and other lidar systems. However, coherent ranging has a lower acquisition speed and requires precisely chirped(8) and highly coherent(5) laser sources, hindering widespread use of the lidar system and impeding parallelization, compared to modern time-of-flight ranging systems that use arrays of individual lasers. Here we demonstrate a massively parallel coherent lidar scheme using an ultra-low-loss photonic chip-based soliton microcomb(9). By fast chirping of the pump laser in the soliton existence range(10) of a microcomb with amplitudes of up to several gigahertz and a sweep rate of up to ten megahertz, a rapid frequency change occurs in the underlying carrier waveform of the soliton pulse stream, but the pulse-to-pulse repetition rate of the soliton pulse stream is retained. As a result, the chirp from a single narrow-linewidth pump laser is transferred to all spectral comb teeth of the soliton at once, thus enabling parallelism in the FMCW lidar. Using this approach we generate 30 distinct channels, demonstrating both parallel distance and velocity measurements at an equivalent rate of three megapixels per second, with the potential to improve sampling rates beyond 150 megapixels per second and to increase the image refresh rate of the FMCW lidar by up to two orders of magnitude without deterioration of eye safety. This approach, when combined with photonic phase arrays(11) based on nanophotonic gratings(12), provides a technological basis for compact, massively parallel and ultrahigh-frame-rate coherent lidar systems.


  
A biomimetic eye with a hemispherical perovskite nanowire array retina 期刊论文
NATURE, 2020, 581 (7808) : 278-+
作者:  Hueckel, Theodore;  Hocky, Glen M.;  Palacci, Jeremie;  Sacanna, Stefano
收藏  |  浏览/下载:75/0  |  提交时间:2020/07/03

A biomimetic electrochemical eye is presented that has a hemispherical retina made from a high-density array of perovskite nanowires that are sensitive to light, mimicking the photoreceptors of a biological retina.


Human eyes possess exceptional image-sensing characteristics such as an extremely wide field of view, high resolution and sensitivity with low aberration(1). Biomimetic eyes with such characteristics are highly desirable, especially in robotics and visual prostheses. However, the spherical shape and the retina of the biological eye pose an enormous fabrication challenge for biomimetic devices(2,3). Here we present an electrochemical eye with a hemispherical retina made of a high-density array of nanowires mimicking the photoreceptors on a human retina. The device design has a high degree of structural similarity to a human eye with the potential to achieve high imaging resolution when individual nanowires are electrically addressed. Additionally, we demonstrate the image-sensing function of our biomimetic device by reconstructing the optical patterns projected onto the device. This work may lead to biomimetic photosensing devices that could find use in a wide spectrum of technological applications.