GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
The water lily genome and the early evolution of flowering plants 期刊论文
NATURE, 2020, 577 (7788) : 79-+
作者:  Zhang, Liangsheng;  Chen, Fei;  Zhang, Xingtan;  Li, Zhen;  Zhao, Yiyong;  Lohaus, Rolf;  Chang, Xiaojun;  Dong, Wei;  Ho, Simon Y. W.;  Liu, Xing;  Song, Aixia;  Chen, Junhao;  Guo, Wenlei;  Wang, Zhengjia;  Zhuang, Yingyu;  Wang, Haifeng;  Chen, Xuequn;  Hu, Juan;  Liu, Yanhui;  Qin, Yuan;  Wang, Kai;  Dong, Shanshan;  Liu, Yang;  Zhang, Shouzhou;  Yu, Xianxian;  Wu, Qian;  Wang, Liangsheng;  Yan, Xueqing;  Jiao, Yuannian;  Kong, Hongzhi;  Zhou, Xiaofan;  Yu, Cuiwei;  Chen, Yuchu;  Li, Fan;  Wang, Jihua;  Chen, Wei;  Chen, Xinlu;  Jia, Qidong;  Zhang, Chi;  Jiang, Yifan;  Zhang, Wanbo;  Liu, Guanhua;  Fu, Jianyu;  Chen, Feng;  Ma, Hong;  Van de Peer, Yves;  Tang, Haibao
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms(1-3). Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.


  
Isolation of an archaeon at the prokaryote-eukaryote interface 期刊论文
NATURE, 2020, 577 (7791) : 519-+
作者:  Imachi, Hiroyuki;  Nobu, Masaru K.;  Nakahara, Nozomi;  Morono, Yuki;  Ogawara, Miyuki;  Takaki, Yoshihiro;  Takano, Yoshinori;  Uematsu, Katsuyuki;  Ikuta, Tetsuro;  Ito, Motoo;  Matsui, Yohei;  Miyazaki, Masayuki;  Murata, Kazuyoshi;  Saito, Yumi;  Sakai, Sanae;  Song, Chihong;  Tasumi, Eiji;  Yamanaka, Yuko;  Yamaguchi, Takashi;  Kamagata, Yoichi;  Tamaki, Hideyuki;  Takai, Ken
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

The origin of eukaryotes remains unclear(1-4). Current data suggest that eukaryotes may have emerged from an archaeal lineage known as '  Asgard'  archaea(5,6). Despite the eukaryote-like genomic features that are found in these archaea, the evolutionary transition from archaea to eukaryotes remains unclear, owing to the lack of cultured representatives and corresponding physiological insights. Here we report the decade-long isolation of an Asgard archaeon related to Lokiarchaeota from deep marine sediment. The archaeon-'  Candidatus Prometheoarchaeum syntrophicum'  strain MK-D1-is an anaerobic, extremely slow-growing, small coccus (around 550 nm in diameter) that degrades amino acids through syntrophy. Although eukaryote-like intracellular complexes have been proposed for Asgard archaea(6), the isolate has no visible organelle-like structure. Instead, Ca. P. syntrophicum is morphologically complex and has unique protrusions that are long and often branching. On the basis of the available data obtained from cultivation and genomics, and reasoned interpretations of the existing literature, we propose a hypothetical model for eukaryogenesis, termed the entangle-engulf-endogenize (also known as E-3) model.


Isolation and characterization of an archaeon that is most closely related to eukaryotes reveals insights into how eukaryotes may have evolved from prokaryotes.


  
Conversion features of evapotranspiration responding to climate warming in transitional climate regions in northern China 期刊论文
CLIMATE DYNAMICS, 2019, 52: 3891-3903
作者:  Zhang, Qiang;  Yang, Zesu;  Hao, Xiaocui;  Yue, Ping
收藏  |  浏览/下载:5/0  |  提交时间:2019/11/26
Climate transition region  Surface evapotranspiration  Precipitation-based climate types  Warming trends  Transition features