GSTDTAP

浏览/检索结果: 共14条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Archimedean lattices emerge in template-directed eutectic solidification 期刊论文
NATURE, 2020, 577 (7790) : 355-+
作者:  Subbaraman, Nidhi;  Viglione, Giuliana
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

Template-directed assembly has been shown to yield a broad diversity of highly ordered mesostructures(1),(2), which in a few cases exhibit symmetries not present in the native material(3-5). However, this technique has not yet been applied to eutectic materials, which underpin many modern technologies ranging from high-performance turbine blades to solder alloys. Here we use directional solidification of a simple AgCl-KCl lamellar eutectic material within a pillar template to show that interactions of the material with the template lead to the emergence of a set of microstructures that are distinct from the eutectic'  s native lamellar structure and the template'  s hexagonal lattice structure. By modifying the solidification rate of this material-template system, trefoil, quatrefoil, cinquefoil and hexafoil mesostructures with submicrometre-size features are realized. Phase-field simulations suggest that these mesostructures appear owing to constraints imposed on diffusion by the hexagonally arrayed pillar template. We note that the trefoil and hexafoil patterns resemble Archimedean honeycomb and square-hexagonal-dodecagonal lattices(6), respectively. We also find that by using monolayer colloidal crystals as templates, a variety of eutectic mesostructures including trefoil and hexafoil are observed, the former resembling the Archimedean kagome lattice. Potential emerging applications for the structures provided by templated eutectics include non-reciprocal metasurfaces(7), magnetic spin-ice systems(8,9), and micro- and nano-lattices with enhanced mechanical properties(10,11).


  
Field-resolved infrared spectroscopy of biological systems 期刊论文
NATURE, 2020, 577 (7788) : 52-+
作者:  Pupeza, Ioachim;  Huber, Marinus;  Trubetskov, Michael;  Schweinberger, Wolfgang;  Hussain, Syed A.;  Hofer, Christina;  Fritsch, Kilian;  Poetzlberger, Markus;  Vamos, Lenard;  Fill, Ernst;  Amotchkina, Tatiana;  Kepesidis, Kosmas V.;  Apolonski, Alexander;  Karpowicz, Nicholas;  Pervak, Vladimir;  Pronin, Oleg;  Fleischmann, Frank;  Azzeer, Abdallah;  Zigman, Mihaela;  Krausz, Ferenc
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

The proper functioning of living systems and physiological phenotypes depends on molecular composition. Yet simultaneous quantitative detection of a wide variety of molecules remains a challenge(1-8). Here we show how broadband optical coherence opens up opportunities for fingerprinting complex molecular ensembles in their natural environment. Vibrationally excited molecules emit a coherent electric field following few-cycle infrared laser excitation(9-12), and this field is specific to the sample'  s molecular composition. Employing electro-optic sampling(10,12-15), we directly measure this global molecular fingerprint down to field strengths 10(7) times weaker than that of the excitation. This enables transillumination of intact living systems with thicknesses of the order of 0.1 millimetres, permitting broadband infrared spectroscopic probing of human cells and plant leaves. In a proof-of-concept analysis of human blood serum, temporal isolation of the infrared electric-field fingerprint from its excitation along with its sampling with attosecond timing precision results in detection sensitivity of submicrograms per millilitre of blood serum and a detectable dynamic range of molecular concentration exceeding 10(5). This technique promises improved molecular sensitivity and molecular coverage for probing complex, real-world biological and medical settings.


  
Structures of human pannexin 1 reveal ion pathways and mechanism of gating 期刊论文
NATURE, 2020
作者:  Krause, David W.;  Hoffmann, Simone;  Hu, Yaoming;  Wible, John R.;  Rougier, Guillermo W.;  Kirk, E. Christopher;  Groenke, Joseph R.;  Rogers, Raymond R.;  Rossie, James B.;  Schultz, Julia A.;  Evans, Alistair R.;  von Koenigswald, Wighart;  Rahantarisoa, Lydia J.
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

Cryo-electron microscopy structures of the ATP-permeable channel pannexin 1 reveal a gating mechanism involving multiple distinct ion-conducting pathways.


Pannexin 1 (PANX1) is an ATP-permeable channel with critical roles in a variety of physiological functions such as blood pressure regulation(1), apoptotic cell clearance(2) and human oocyte development(3). Here we present several structures of human PANX1 in a heptameric assembly at resolutions of up to 2.8 angstrom, including an apo state, a caspase-7-cleaved state and a carbenoxolone-bound state. We reveal a gating mechanism that involves two ion-conducting pathways. Under normal cellular conditions, the intracellular entry of the wide main pore is physically plugged by the C-terminal tail. Small anions are conducted through narrow tunnels in the intracellular domain. These tunnels connect to the main pore and are gated by a long linker between the N-terminal helix and the first transmembrane helix. During apoptosis, the C-terminal tail is cleaved by caspase, allowing the release of ATP through the main pore. We identified a carbenoxolone-binding site embraced by W74 in the extracellular entrance and a role for carbenoxolone as a channel blocker. We identified a gap-junction-like structure using a glycosylation-deficient mutant, N255A. Our studies provide a solid foundation for understanding the molecular mechanisms underlying the channel gating and inhibition of PANX1 and related large-pore channels.


  
Ionic solids from common colloids 期刊论文
NATURE, 2020, 580 (7804) : 487-+
作者:  Delord, T.;  Huillery, P.;  Nicolas, L.;  Hetet, G.
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

Oppositely charged colloidal particles are assembled in water through an approach that allows electrostatic interactions to be precisely tuned to generate macroscopic single crystals.


From rock salt to nanoparticle superlattices, complex structure can emerge from simple building blocks that attract each other through Coulombic forces(1-4). On the micrometre scale, however, colloids in water defy the intuitively simple idea of forming crystals from oppositely charged partners, instead forming non-equilibrium structures such as clusters and gels(5-7). Although various systems have been engineered to grow binary crystals(8-11), native surface charge in aqueous conditions has not been used to assemble crystalline materials. Here we form ionic colloidal crystals in water through an approach that we refer to as polymer-attenuated Coulombic self-assembly. The key to crystallization is the use of a neutral polymer to keep particles separated by well defined distances, allowing us to tune the attractive overlap of electrical double layers, directing particles to disperse, crystallize or become permanently fixed on demand. The nucleation and growth of macroscopic single crystals is demonstrated by using the Debye screening length to fine-tune assembly. Using a variety of colloidal particles and commercial polymers, ionic colloidal crystals isostructural to caesium chloride, sodium chloride, aluminium diboride and K4C60 are selected according to particle size ratios. Once fixed by simply diluting out solution salts, crystals are pulled out of the water for further manipulation, demonstrating an accurate translation from solution-phase assembly to dried solid structures. In contrast to other assembly approaches, in which particles must be carefully engineered to encode binding information(12-18), polymer-attenuated Coulombic self-assembly enables conventional colloids to be used as model colloidal ions, primed for crystallization.


  
An open-source drug discovery platform enables ultra-large virtual screens 期刊论文
NATURE, 2020, 580 (7805) : 663-+
作者:  Peron, Simon;  Pancholi, Ravi;  Voelcker, Bettina;  Wittenbach, Jason D.;  olafsdottir, H. Freyja;  Freeman, Jeremy;  Svoboda, Karel
收藏  |  浏览/下载:51/0  |  提交时间:2020/07/03

VirtualFlow, an open-source drug discovery platform, enables the efficient preparation and virtual screening of ultra-large ligand libraries to identify molecules that bind with high affinity to target proteins.


On average, an approved drug currently costs US$2-3 billion and takes more than 10 years to develop(1). In part, this is due to expensive and time-consuming wet-laboratory experiments, poor initial hit compounds and the high attrition rates in the (pre-)clinical phases. Structure-based virtual screening has the potential to mitigate these problems. With structure-based virtual screening, the quality of the hits improves with the number of compounds screened(2). However, despite the fact that large databases of compounds exist, the ability to carry out large-scale structure-based virtual screening on computer clusters in an accessible, efficient and flexible manner has remained difficult. Here we describe VirtualFlow, a highly automated and versatile open-source platform with perfect scaling behaviour that is able to prepare and efficiently screen ultra-large libraries of compounds. VirtualFlow is able to use a variety of the most powerful docking programs. Using VirtualFlow, we prepared one of the largest and freely available ready-to-dock ligand libraries, with more than 1.4 billion commercially available molecules. To demonstrate the power of VirtualFlow, we screened more than 1 billion compounds and identified a set of structurally diverse molecules that bind to KEAP1 with submicromolar affinity. One of the lead inhibitors (iKeap1) engages KEAP1 with nanomolar affinity (dissociation constant (K-d) = 114 nM) and disrupts the interaction between KEAP1 and the transcription factor NRF2. This illustrates the potential of VirtualFlow to access vast regions of the chemical space and identify molecules that bind with high affinity to target proteins.


  
Layered nanocomposites by shear-flow-induced alignment of nanosheets 期刊论文
NATURE, 2020, 580 (7802) : 210-+
作者:  Rollie, Clare;  Chevallereau, Anne;  Watson, Bridget N. J.;  Chyou, Te-yuan;  Fradet, Olivier;  McLeod, Isobel;  Fineran, Peter C.;  Brown, Chris M.;  Gandon, Sylvain;  Westra, Edze R.
收藏  |  浏览/下载:59/0  |  提交时间:2020/07/03

Layered nanocomposites fabricated using a continuous and scalable process achieve properties exceeding those of natural nacre, the result of stiffened matrix polymer chains confined between highly aligned nanosheets.


Biological materials, such as bones, teeth and mollusc shells, are well known for their excellent strength, modulus and toughness(1-3). Such properties are attributed to the elaborate layered microstructure of inorganic reinforcing nanofillers, especially two-dimensional nanosheets or nanoplatelets, within a ductile organic matrix(4-6). Inspired by these biological structures, several assembly strategies-including layer-by-layer(4,7,8), casting(9,10), vacuum filtration(11-13) and use of magnetic fields(14,15)-have been used to develop layered nanocomposites. However, how to produce ultrastrong layered nanocomposites in a universal, viable and scalable manner remains an open issue. Here we present a strategy to produce nanocomposites with highly ordered layered structures using shear-flow-induced alignment of two-dimensional nanosheets at an immiscible hydrogel/oil interface. For example, nanocomposites based on nanosheets of graphene oxide and clay exhibit a tensile strength of up to 1,215 +/- 80 megapascals and a Young'  s modulus of 198.8 +/- 6.5 gigapascals, which are 9.0 and 2.8 times higher, respectively, than those of natural nacre (mother of pearl). When nanosheets of clay are used, the toughness of the resulting nanocomposite can reach 36.7 +/- 3.0 megajoules per cubic metre, which is 20.4 times higher than that of natural nacre  meanwhile, the tensile strength is 1,195 +/- 60 megapascals. Quantitative analysis indicates that the well aligned nanosheets form a critical interphase, and this results in the observed mechanical properties. We consider that our strategy, which could be readily extended to align a variety of two-dimensional nanofillers, could be applied to a wide range of structural composites and lead to the development of high-performance composites.


  
DNA-loop extruding condensin complexes can traverse one another 期刊论文
NATURE, 2020
作者:  Li, Xun;  Zhang, Fei;  He, Haiying;  Berry, Joseph J.;  Zhu, Kai;  Xu, Tao
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Condensin, a key component of the structure maintenance of chromosome (SMC) protein complexes, has recently been shown to be a motor that extrudes loops of DNA(1). It remains unclear, however, how condensin complexes work together to collectively package DNA into chromosomes. Here we use time-lapse single-molecule visualization to study mutual interactions between two DNA-loop-extruding yeast condensins. We find that these motor proteins, which, individually, extrude DNA in one direction only are able to dynamically change each other'  s DNA loop sizes, even when far apart. When they are in close proximity, condensin complexes are able to traverse each other and form a loop structure, which we term a Z-loop-three double-stranded DNA helices aligned in parallel with one condensin at each edge. Z-loops can fill gaps left by single loops and can form symmetric dimer motors that pull in DNA from both sides. These findings indicate that condensin may achieve chromosomal compaction using a variety of looping structures.


Single-molecule visualization shows that condensin-a motor protein that extrudes DNA in one direction only-can encounter and pass a second condensin molecule to form a new type of DNA loop that gathers DNA from both sides.


  
Premature mortality related to United States cross-state air pollution 期刊论文
NATURE, 2020, 578 (7794) : 261-+
作者:  Helmink, Beth A.;  Reddy, Sangeetha M.;  Gao, Jianjun;  Zhang, Shaojun;  Basar, Rafet;  Thakur, Rohit;  Yizhak, Keren;  Sade-Feldman, Moshe;  Blando, Jorge;  Han, Guangchun;  Gopalakrishnan, Vancheswaran;  Xi, Yuanxin;  Zhao, Hao;  Amaria, Rodabe N.;  Tawbi, Hussein A.;  Cogdill, Alex P.;  Liu, Wenbin;  LeBleu, Valerie S.;  Kugeratski, Fernanda G.;  Patel, Sapna;  Davies, Michael A.;  Hwu, Patrick;  Lee, Jeffrey E.;  Gershenwald, Jeffrey E.;  Lucci, Anthony;  Arora, Reetakshi;  Woodman, Scott;  Keung, Emily Z.;  Gaudreau, Pierre-Olivier;  Reuben, Alexandre;  Spencer, Christine N.;  Burton, Elizabeth M.;  Haydu, Lauren E.;  Lazar, Alexander J.;  Zapassodi, Roberta;  Hudgens, Courtney W.;  Ledesma, Deborah A.;  Ong, SuFey;  Bailey, Michael;  Warren, Sarah;  Rao, Disha;  Krijgsman, Oscar;  Rozeman, Elisa A.;  Peeper, Daniel;  Blank, Christian U.;  Schumacher, Ton N.;  Butterfield, Lisa H.;  Zelazowska, Monika A.;  McBride, Kevin M.;  Kalluri, Raghu;  Allison, James;  Petitprez, Florent;  Fridman, Wolf Herman;  Sautes-Fridman, Catherine;  Hacohen, Nir;  Rezvani, Katayoun;  Sharma, Padmanee;  Tetzlaff, Michael T.;  Wang, Linghua;  Wargo, Jennifer A.
收藏  |  浏览/下载:68/0  |  提交时间:2020/05/13

Outdoor air pollution adversely affects human health and is estimated to be responsible for five to ten per cent of the total annual premature mortality in the contiguous United States(1-3). Combustion emissions from a variety of sources, such as power generation or road traffic, make a large contribution to harmful air pollutants such as ozone and fine particulate matter (PM2.5)(4). Efforts to mitigate air pollution have focused mainly on the relationship between local emission sources and local air quality(2). Air quality can also be affected by distant emission sources, however, including emissions from neighbouring federal states(5,6). This cross-state exchange of pollution poses additional regulatory challenges. Here we quantify the exchange of air pollution among the contiguous United States, and assess its impact on premature mortality that is linked to increased human exposure to PM2.5 and ozone from seven emission sectors for 2005 to 2018. On average, we find that 41 to 53 per cent of air-quality-related premature mortality resulting from a state'  s emissions occurs outside that state. We also find variations in the cross-state contributions of different emission sectors and chemical species to premature mortality, and changes in these variations over time. Emissions from electric power generation have the greatest cross-state impacts as a fraction of their total impacts, whereas commercial/residential emissions have the smallest. However, reductions in emissions from electric power generation since 2005 have meant that, by 2018, cross-state premature mortality associated with the commercial/residential sector was twice that associated with power generation. In terms of the chemical species emitted, nitrogen oxides and sulfur dioxide emissions caused the most cross-state premature deaths in 2005, but by 2018 primary PM2.5 emissions led to cross-state premature deaths equal to three times those associated with sulfur dioxide emissions. These reported shifts in emission sectors and emission species that contribute to premature mortality may help to guide improvements to air quality in the contiguous United States.


  
A claustrum in reptiles and its role in slow-wave sleep 期刊论文
NATURE, 2020, 578 (7795) : 413-+
作者:  Loubeyre, Paul;  Occelli, Florent;  Dumas, Paul
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

The mammalian claustrum, owing to its widespread connectivity with other forebrain structures, has been hypothesized to mediate functions that range from decision-making to consciousness(1). Here we report that a homologue of the claustrum, identified by single-cell transcriptomics and viral tracing of connectivity, also exists in a reptile-the Australian bearded dragon Pogona vitticeps. In Pogona, the claustrum underlies the generation of sharp waves during slow-wave sleep. The sharp waves, together with superimposed high-frequency ripples(2), propagate to the entire neighbouring pallial dorsal ventricular ridge (DVR). Unilateral or bilateral lesions of the claustrum suppress the production of sharp-wave ripples during slow-wave sleep in a unilateral or bilateral manner, respectively, but do not affect the regular and rapidly alternating sleep rhythm that is characteristic of sleep in this species(3). The claustrum is thus not involved in the generation of the sleep rhythm itself. Tract tracing revealed that the reptilian claustrum projects widely to a variety of forebrain areas, including the cortex, and that it receives converging inputs from, among others, areas of the mid- and hindbrain that are known to be involved in wake-sleep control in mammals(4-6). Periodically modulating the concentration of serotonin in the claustrum, for example, caused a matching modulation of sharp-wave production there and in the neighbouring DVR. Using transcriptomic approaches, we also identified a claustrum in the turtle Trachemys scripta, a distant reptilian relative of lizards. The claustrum is therefore an ancient structure that was probably already present in the brain of the common vertebrate ancestor of reptiles and mammals. It may have an important role in the control of brain states owing to the ascending input it receives from the mid- and hindbrain, its widespread projections to the forebrain and its role in sharp-wave generation during slow-wave sleep.


A structure homologous to the mammalian claustrum exists in reptiles and has a role in generating sharp waves in the brain during slow-wave sleep.


  
Clades of huge phages from across Earth's ecosystems 期刊论文
NATURE, 2020, 578 (7795) : 425-+
作者:  Zhang, Bing;  Ma, Sai;  Rachmin, Inbal;  He, Megan;  Baral, Pankaj;  Choi, Sekyu;  Goncalves, William A.;  Shwartz, Yulia;  Fast, Eva M.;  Su, Yiqun;  Zon, Leonard I.;  Regev, Aviv;  Buenrostro, Jason D.;  Cunha, Thiago M.;  Chiu, Isaac M.
收藏  |  浏览/下载:81/0  |  提交时间:2020/07/03

Bacteriophages typically have small genomes(1) and depend on their bacterial hosts for replication(2). Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth'  s ecosystems.


Genomic analyses of major clades of huge phages sampled from across Earth'  s ecosystems show that they have diverse genetic inventories, including a variety of CRISPR-Cas systems and translation-relevant genes.