GSTDTAP

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
A metabolic pathway for bile acid dehydroxylation by the gut microbiome 期刊论文
NATURE, 2020
作者:  Zhong, Miao;  Tran, Kevin;  Min, Yimeng;  Wang, Chuanhao;  Wang, Ziyun;  Dinh, Cao-Thang;  De Luna, Phil;  Yu, Zongqian;  Rasouli, Armin Sedighian;  Brodersen, Peter;  Sun, Song;  Voznyy, Oleksandr;  Tan, Chih-Shan;  Askerka, Mikhail;  Che, Fanglin;  Liu, Min;  Seifitokaldani, Ali;  Pang, Yuanjie;  Lo, Shen-Chuan;  Ip, Alexander;  Ulissi, Zachary;  Sargent, Edward H.
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

The biosynthetic pathway that produces the secondary bile acids DCA and LCA in human gut microbes has been fully characterized, engineered into another bacterial host, and used to confer DCA production in germ-free mice-an important proof-of-principle for the engineering of gut microbial pathways.


The gut microbiota synthesize hundreds of molecules, many of which influence host physiology. Among the most abundant metabolites are the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA), which accumulate at concentrations of around 500 mu M and are known to block the growth ofClostridium difficile(1), promote hepatocellular carcinoma(2)and modulate host metabolism via the G-protein-coupled receptor TGR5 (ref.(3)). More broadly, DCA, LCA and their derivatives are major components of the recirculating pool of bile acids(4)  the size and composition of this pool are a target of therapies for primary biliary cholangitis and nonalcoholic steatohepatitis. Nonetheless, despite the clear impact of DCA and LCA on host physiology, an incomplete knowledge of their biosynthetic genes and a lack of genetic tools to enable modification of their native microbial producers limit our ability to modulate secondary bile acid levels in the host. Here we complete the pathway to DCA and LCA by assigning and characterizing enzymes for each of the steps in its reductive arm, revealing a strategy in which the A-B rings of the steroid core are transiently converted into an electron acceptor for two reductive steps carried out by Fe-S flavoenzymes. Using anaerobic in vitro reconstitution, we establish that a set of six enzymes is necessary and sufficient for the eight-step conversion of cholic acid to DCA. We then engineer the pathway intoClostridium sporogenes, conferring production of DCA and LCA on a nonproducing commensal and demonstrating that a microbiome-derived pathway can be expressed and controlled heterologously. These data establish a complete pathway to two central components of the bile acid pool.


  
Bacterial coexistence driven by motility and spatial competition 期刊论文
NATURE, 2020, 578 (7796) : 588-+
作者:  Micke, P.;  Leopold, T.;  King, S. A.;  Benkler, E.;  Spiess, L. J.;  Schmoeger, L.;  Schwarz, M.;  Crespo Lopez-Urrutia, J. R.;  Schmidt, P. O.
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Elucidating elementary mechanisms that underlie bacterial diversity is central to ecology(1,2) and microbiome research(3). Bacteria are known to coexist by metabolic specialization(4), cooperation(5) and cyclic warfare(6-8). Many species are also motile(9), which is studied in terms of mechanism(10,11), benefit(12,13), strategy(14,15), evolution(16,17) and ecology(18,19). Indeed, bacteria often compete for nutrient patches that become available periodically or by random disturbances(2,20,21). However, the role of bacterial motility in coexistence remains unexplored experimentally. Here we show that-for mixed bacterial populations that colonize nutrient patches-either population outcompetes the other when low in relative abundance. This inversion of the competitive hierarchy is caused by active segregation and spatial exclusion within the patch: a small fast-moving population can outcompete a large fast-growing population by impeding its migration into the patch, while a small fast-growing population can outcompete a large fast-moving population by expelling it from the initial contact area. The resulting spatial segregation is lost for weak growth-migration trade-offs and a lack of virgin space, but is robust to population ratio, density and chemotactic ability, and is observed in both laboratory and wild strains. These findings show that motility differences and their trade-offs with growth are sufficient to promote diversity, and suggest previously undescribed roles for motility in niche formation and collective expulsion-containment strategies beyond individual search and survival.


In mixed bacterial populations that colonize nutrient patches, a growth-migration trade-off can lead to spatial exclusion that provides an advantage to populations that become rare, thereby stabilizing the community.


  
The structure of human thyroglobulin 期刊论文
NATURE, 2020, 578 (7796) : 627-+
作者:  Golub, Eyal;  Subramanian, Rohit H.;  Esselborn, Julian;  Alberstein, Robert G.;  Bailey, Jake B.;  Chiong, Jerika A.;  Yan, Xiaodong;  Booth, Timothy;  Baker, Timothy S.;  Tezcan, F. Akif
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

The cryo-electron microscopy structure of human thyroglobulin reveals that proximity, flexibility and solvent exposure are key characteristics of its hormonogenic tyrosine pairs, and provides a framework for understanding the formation of thyroid hormones.


Thyroglobulin (TG) is the protein precursor of thyroid hormones, which are essential for growth, development and the control of metabolism in vertebrates(1,2). Hormone synthesis from TG occurs in the thyroid gland via the iodination and coupling of pairs of tyrosines, and is completed by TG proteolysis(3). Tyrosine proximity within TG is thought to enable the coupling reaction but hormonogenic tyrosines have not been clearly identified, and the lack of a three-dimensional structure of TG has prevented mechanistic understanding(4). Here we present the structure of full-length human thyroglobulin at a resolution of approximately 3.5 angstrom, determined by cryo-electron microscopy. We identified all of the hormonogenic tyrosine pairs in the structure, and verified them using site-directed mutagenesis and in vitro hormone-production assays using human TG expressed in HEK293T cells. Our analysis revealed that the proximity, flexibility and solvent exposure of the tyrosines are the key characteristics of hormonogenic sites. We transferred the reaction sites from TG to an engineered tyrosine donor-acceptor pair in the unrelated bacterial maltose-binding protein (MBP), which yielded hormone production with an efficiency comparable to that of TG. Our study provides a framework to further understand the production and regulation of thyroid hormones.


  
Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling 期刊论文
NATURE, 2020, 578 (7796) : 582-+
作者:  Faraco, Giuseppe;  Hochrainer, Karin;  Segarra, Steven G.;  Schaeffer, Samantha;  Santisteban, Monica M.;  Menon, Ajay;  Jiang, Hong;  Holtzman, David M.;  Anrather, Josef;  Iadecola, Costantino
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

Addressing the ongoing antibiotic crisis requires the discovery of compounds with novel mechanisms of action that are capable of treating drug-resistant infections(1). Many antibiotics are sourced from specialized metabolites produced by bacteria, particularly those of the Actinomycetes family(2). Although actinomycete extracts have traditionally been screened using activity-based platforms, this approach has become unfavourable owing to the frequent rediscovery of known compounds. Genome sequencing of actinomycetes reveals an untapped reservoir of biosynthetic gene clusters, but prioritization is required to predict which gene clusters may yield promising new chemical matter(2). Here we make use of the phylogeny of biosynthetic genes along with the lack of known resistance determinants to predict divergent members of the glycopeptide family of antibiotics that are likely to possess new biological activities. Using these predictions, we uncovered two members of a new functional class of glycopeptide antibiotics-the known glycopeptide antibiotic complestatin and a newly discovered compound we call corbomycin-that have a novel mode of action. We show that by binding to peptidoglycan, complestatin and corbomycin block the action of autolysins-essential peptidoglycan hydrolases that are required for remodelling of the cell wall during growth. Corbomycin and complestatin have low levels of resistance development and are effective in reducing bacterial burden in a mouse model of skin MRSA infection.


The glycopeptide antibiotic-related compounds complestatin and corbomycin function by binding to peptidoglycan and blocking the action of autolysins-peptidoglycan hydrolase enzymes that remodel the cell wall during growth.


  
Soil microbial moisture dependences and responses to drying-rewetting: The legacy of 18 years drought 期刊论文
GLOBAL CHANGE BIOLOGY, 2019, 25 (3) : 1005-1015
作者:  de Nijs, Evy A.;  Hicks, Lettice C.;  Leizeaga, Ainara;  Tietema, Albert;  Rousk, Johannes
收藏  |  浏览/下载:11/0  |  提交时间:2019/04/09
bacterial growth  climate change  drought adaptation  drying-rewetting  long-term field experiment  resistance and resilience  respiration