GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
Origin of complexity in haemoglobin evolution 期刊论文
NATURE, 2020
作者:  Cheema, Suraj S.;  Kwon, Daewoong;  Shanker, Nirmaan;  dos Reis, Roberto;  Hsu, Shang-Lin;  Xiao, Jun;  Zhang, Haigang;  Wagner, Ryan;  Datar, Adhiraj;  McCarter, Margaret R.;  Serrao, Claudy R.;  Yadav, Ajay K.;  Karbasian, Golnaz;  Hsu, Cheng-Hsiang;  Tan, Ava J.;  Wang, Li-Chen;  Thakare, Vishal;  Zhang, Xiang;  Mehta, Apurva;  Karapetrova, Evguenia;  Chopdekar, Rajesh, V;  Shafer, Padraic;  Arenholz, Elke;  Hu, Chenming;  Proksch, Roger;  Ramesh, Ramamoorthy;  Ciston, Jim;  Salahuddin, Sayeef
收藏  |  浏览/下载:77/0  |  提交时间:2020/07/03

Most proteins associate into multimeric complexes with specific architectures(1,2), which often have functional properties such as cooperative ligand binding or allosteric regulation(3). No detailed knowledge is available about how any multimer and its functions arose during evolution. Here we use ancestral protein reconstruction and biophysical assays to elucidate the origins of vertebrate haemoglobin, a heterotetramer of paralogous alpha- and beta-subunits that mediates respiratory oxygen transport and exchange by cooperatively binding oxygen with moderate affinity. We show that modern haemoglobin evolved from an ancient monomer and characterize the historical '  missing link'  through which the modern tetramer evolved-a noncooperative homodimer with high oxygen affinity that existed before the gene duplication that generated distinct alpha- and beta-subunits. Reintroducing just two post-duplication historical substitutions into the ancestral protein is sufficient to cause strong tetramerization by creating favourable contacts with more ancient residues on the opposing subunit. These surface substitutions markedly reduce oxygen affinity and even confer cooperativity, because an ancient linkage between the oxygen binding site and the multimerization interface was already an intrinsic feature of the protein'  s structure. Our findings establish that evolution can produce new complex molecular structures and functions via simple genetic mechanisms that recruit existing biophysical features into higher-level architectures.


Experimental analysis of reconstructed ancestral globins reveals that haemoglobin'  s complex tetrameric structure and oxygen-binding functions evolved by simple genetic and biophysical mechanisms.


  
Structure of the M2 muscarinic receptor-beta-arrestin complex in a lipid nanodisc 期刊论文
NATURE, 2020, 579 (7798) : 297-+
作者:  Gate, David;  Saligrama, Naresha;  Leventhal, Olivia;  Yang, Andrew C.;  Unger, Michael S.;  Middeldorp, Jinte;  Chen, Kelly;  Lehallier, Benoit;  Channappa, Divya;  De Los Santos, Mark B.;  McBride, Alisha;  Pluvinage, John;  Elahi, Fanny;  Tam, Grace Kyin-Ye;  Kim, Yongha;  Greicius, Michael;  Wagner, Anthony D.;  Aigner, Ludwig;  Galasko, Douglas R.;  Davis, Mark M.;  Wyss-Coray, Tony
收藏  |  浏览/下载:38/0  |  提交时间:2020/07/03

After activation by an agonist, G-protein-coupled receptors (GPCRs) recruit beta-arrestin, which desensitizes heterotrimeric G-protein signalling and promotes receptor endocytosis(1). Additionally, beta-arrestin directly regulates many cell signalling pathways that can induce cellular responses distinct from that of G proteins(2). In contrast to G proteins, for which there are many high-resolution structures in complex with GPCRs, the molecular mechanisms underlying the interaction of beta-arrestin with GPCRs are much less understood. Here we present a cryo-electron microscopy structure of beta-arrestin 1 (beta arr1) in complex with M2 muscarinic receptor (M2R) reconstituted in lipid nanodiscs. The M2R-beta arr1 complex displays a multimodal network of flexible interactions, including binding of the N domain of beta arr1 to phosphorylated receptor residues and insertion of the finger loop of beta arr1 into the M2R seven-transmembrane bundle, which adopts a conformation similar to that in the M2R-heterotrimeric G(o) protein complex(3). Moreover, the cryo-electron microscopy map reveals that the C-edge of beta arr1 engages the lipid bilayer. Through atomistic simulations and biophysical, biochemical and cellular assays, we show that the C-edge is critical for stable complex formation, beta arr1 recruitment, receptor internalization, and desensitization of G-protein activation. Taken together, these data suggest that the cooperative interactions of beta-arrestin with both the receptor and the phospholipid bilayer contribute to its functional versatility.


  
Quantifying the climate response to extreme land cover changes in Europe with a regional model 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (7)
作者:  Cherubini, Francesco;  Huang, Bo;  Hu, Xiangping;  Toelle, Merja H.;  Stromman, Anders Hammer
收藏  |  浏览/下载:15/0  |  提交时间:2019/04/09
regional climate  land cover change  biophysical mechanisms