GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
Origin of complexity in haemoglobin evolution 期刊论文
NATURE, 2020
作者:  Cheema, Suraj S.;  Kwon, Daewoong;  Shanker, Nirmaan;  dos Reis, Roberto;  Hsu, Shang-Lin;  Xiao, Jun;  Zhang, Haigang;  Wagner, Ryan;  Datar, Adhiraj;  McCarter, Margaret R.;  Serrao, Claudy R.;  Yadav, Ajay K.;  Karbasian, Golnaz;  Hsu, Cheng-Hsiang;  Tan, Ava J.;  Wang, Li-Chen;  Thakare, Vishal;  Zhang, Xiang;  Mehta, Apurva;  Karapetrova, Evguenia;  Chopdekar, Rajesh, V;  Shafer, Padraic;  Arenholz, Elke;  Hu, Chenming;  Proksch, Roger;  Ramesh, Ramamoorthy;  Ciston, Jim;  Salahuddin, Sayeef
收藏  |  浏览/下载:79/0  |  提交时间:2020/07/03

Most proteins associate into multimeric complexes with specific architectures(1,2), which often have functional properties such as cooperative ligand binding or allosteric regulation(3). No detailed knowledge is available about how any multimer and its functions arose during evolution. Here we use ancestral protein reconstruction and biophysical assays to elucidate the origins of vertebrate haemoglobin, a heterotetramer of paralogous alpha- and beta-subunits that mediates respiratory oxygen transport and exchange by cooperatively binding oxygen with moderate affinity. We show that modern haemoglobin evolved from an ancient monomer and characterize the historical '  missing link'  through which the modern tetramer evolved-a noncooperative homodimer with high oxygen affinity that existed before the gene duplication that generated distinct alpha- and beta-subunits. Reintroducing just two post-duplication historical substitutions into the ancestral protein is sufficient to cause strong tetramerization by creating favourable contacts with more ancient residues on the opposing subunit. These surface substitutions markedly reduce oxygen affinity and even confer cooperativity, because an ancient linkage between the oxygen binding site and the multimerization interface was already an intrinsic feature of the protein'  s structure. Our findings establish that evolution can produce new complex molecular structures and functions via simple genetic mechanisms that recruit existing biophysical features into higher-level architectures.


Experimental analysis of reconstructed ancestral globins reveals that haemoglobin'  s complex tetrameric structure and oxygen-binding functions evolved by simple genetic and biophysical mechanisms.


  
Discriminating alpha-synuclein strains in Parkinson's disease and multiple system atrophy 期刊论文
NATURE, 2020, 578 (7794) : 273-+
作者:  Senior, Andrew W.;  Evans, Richard;  Jumper, John;  Kirkpatrick, James;  Sifre, Laurent;  Green, Tim;  Qin, Chongli;  Zidek, Augustin;  Nelson, Alexander W. R.;  Bridgland, Alex;  Penedones, Hugo;  Petersen, Stig;  Simonyan, Karen;  Crossan, Steve;  Kohli, Pushmeet;  Jones, David T.;  Silver, David;  Kavukcuoglu, Koray;  Hassabis, Demis
收藏  |  浏览/下载:57/0  |  提交时间:2020/07/03

Synucleinopathies are neurodegenerative diseases that are associated with the misfolding and aggregation of alpha-synuclein, including Parkinson'  s disease, dementia with Lewy bodies and multiple system atrophy(1). Clinically, it is challenging to differentiate Parkinson'  s disease and multiple system atrophy, especially at the early stages of disease(2). Aggregates of alpha-synuclein in distinct synucleinopathies have been proposed to represent different conformational strains of alpha-synuclein that can self-propagate and spread from cell to cell(3-6). Protein misfolding cyclic amplification (PMCA) is a technique that has previously been used to detect alpha-synuclein aggregates in samples of cerebrospinal fluid with high sensitivity and specificity(7,8). Here we show that the alpha-synuclein-PMCA assay can discriminate between samples of cerebrospinal fluid from patients diagnosed with Parkinson'  s disease and samples from patients with multiple system atrophy, with an overall sensitivity of 95.4%. We used a combination of biochemical, biophysical and biological methods to analyse the product of alpha-synuclein-PMCA, and found that the characteristics of the alpha-synuclein aggregates in the cerebrospinal fluid could be used to readily distinguish between Parkinson'  s disease and multiple system atrophy. We also found that the properties of aggregates that were amplified from the cerebrospinal fluid were similar to those of aggregates that were amplified from the brain. These findings suggest that alpha-synuclein aggregates that are associated with Parkinson'  s disease and multiple system atrophy correspond to different conformational strains of alpha-synuclein, which can be amplified and detected by alpha-synuclein-PMCA. Our results may help to improve our understanding of the mechanism of alpha-synuclein misfolding and the structures of the aggregates that are implicated in different synucleinopathies, and may also enable the development of a biochemical assay to discriminate between Parkinson'  s disease and multiple system atrophy.


Protein misfolding cyclic amplification (PMCA) technology can discriminate between patients with Parkinson'  s disease and patients with multiple system atrophy on the basis of the characteristics of the alpha-synuclein aggregates in the cerebrospinal fluid.


  
Multiple satellite-based analysis reveals complex climate effects of temperate forests and related energy budget 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (7)
作者:  Ma, Wei;  Jia, Gensuo;  Zhang, Anzhi
收藏  |  浏览/下载:18/0  |  提交时间:2019/04/09
temperate forest conversion  biophysical properties  surface energy budget  latitudinal  seasonal  satellite-based observations