GSTDTAP

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate 期刊论文
NATURE, 2020, 579 (7800) : 586-+
作者:  Ng, Andrew H.;  Nguyen, Taylor H.;  Gomez-Schiavon, Mariana;  Dods, Galen;  Langan, Robert A.;  Boyken, Scott E.;  Samson, Jennifer A.;  Waldburger, Lucas M.;  Dueber, John E.;  Baker, David;  El-Samad, Hana
收藏  |  浏览/下载:42/0  |  提交时间:2020/07/03

A genetic mouse model is used to reveal a two-pronged mechanism of fructose-induced de novo lipogenesis in the liver, in which fructose catabolism in hepatocytes provides a signal to promote lipogenesis, whereas fructose metabolism by the gut microbiota provides acetate as a substrate to feed lipogenesis.


Consumption of fructose has risen markedly in recent decades owing to the use of sucrose and high-fructose corn syrup in beverages and processed foods(1), and this has contributed to increasing rates of obesity and non-alcoholic fatty liver disease(2-4). Fructose intake triggers de novo lipogenesis in the liver(4-6), in which carbon precursors of acetyl-CoA are converted into fatty acids. The ATP citrate lyase (ACLY) enzyme cleaves cytosolic citrate to generate acetyl-CoA, and is upregulated after consumption of carbohydrates(7). Clinical trials are currently pursuing the inhibition of ACLY as a treatment for metabolic diseases(8). However, the route from dietary fructose to hepatic acetyl-CoA and lipids remains unknown. Here, using in vivo isotope tracing, we show that liver-specific deletion of Acly in mice is unable to suppress fructose-induced lipogenesis. Dietary fructose is converted to acetate by the gut microbiota(9), and this supplies lipogenic acetyl-CoA independently of ACLY(10). Depletion of the microbiota or silencing of hepatic ACSS2, which generates acetyl-CoA from acetate, potently suppresses the conversion of bolus fructose into hepatic acetyl-CoA and fatty acids. When fructose is consumed more gradually to facilitate its absorption in the small intestine, both citrate cleavage in hepatocytes and microorganism-derived acetate contribute to lipogenesis. By contrast, the lipogenic transcriptional program is activated in response to fructose in a manner that is independent of acetyl-CoA metabolism. These data reveal a two-pronged mechanism that regulates hepatic lipogenesis, in which fructolysis within hepatocytes provides a signal to promote the expression of lipogenic genes, and the generation of microbial acetate feeds lipogenic pools of acetyl-CoA.


  
Synthesis of rare sugar isomers through site-selective epimerization 期刊论文
NATURE, 2020: 403-+
作者:  Jackson, Hartland W.;  Fischer, Jana R.;  Zanotelli, Vito R. T.;  Ali, H. Raza;  Mechera, Robert;  Soysal, Savas D.;  Moch, Holger;  Muenst, Simone;  Varga, Zsuzsanna;  Weber, Walter P.;  Bodenmiller, Bernd
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

Glycans have diverse physiological functions, ranging from energy storage and structural integrity to cell signalling and the regulation of intracellular processes(1). Although biomass-derived carbohydrates (such as d-glucose, d-xylose and d-galactose) are extracted on commercial scales, and serve as renewable chemical feedstocks and building blocks(2,3), there are hundreds of distinct monosaccharides that typically cannot be isolated from their natural sources and must instead be prepared through multistep chemical or enzymatic syntheses(4,5). These '  rare'  sugars feature prominently in bioactive natural products and pharmaceuticals, including antiviral, antibacterial, anticancer and cardiac drugs(6,7). Here we report the preparation of rare sugar isomers directly from biomass carbohydrates through site-selective epimerization reactions. Mechanistic studies establish that these reactions proceed under kinetic control, through sequential steps of hydrogen-atom abstraction and hydrogen-atom donation mediated by two distinct catalysts. This synthetic strategy provides concise and potentially extensive access to this valuable class of natural compounds.


Various rare sugars that cannot be isolated from natural sources are synthesized using light-driven epimerization, a process which may find application in other synthetic scenarios.


  
Plant respiration: Controlled by photosynthesis or biomass? 期刊论文
GLOBAL CHANGE BIOLOGY, 2019
作者:  Collalti, Alessio;  Tjoelker, Mark G.;  Hoch, Guenter;  Makela, Annikki;  Guidolotti, Gabriele;  Heskel, Mary;  Petit, Giai;  Ryan, Michael G.;  Battipaglia, Giovanna;  Matteucci, Giorgio;  Prentice, Iain Colin
收藏  |  浏览/下载:46/0  |  提交时间:2019/11/27
biomass accumulation  carbon use efficiency  gross primary production  maintenance respiration  metabolic scaling theory  net primary production  nonstructural carbohydrates  plant respiration  
Lower photorespiration in elevated CO2 reduces leaf N concentrations in mature Eucalyptus trees in the field 期刊论文
GLOBAL CHANGE BIOLOGY, 2019, 25 (4)
作者:  Wujeska-Klause, Agnieszka;  Crous, Kristine Y.;  Ghannoum, Oula;  Ellsworth, David S.
收藏  |  浏览/下载:13/0  |  提交时间:2019/11/26
carbohydrates  EucFACE  leaf age  nitrate  nitrate reductase  nitrogen assimilation  photorespiration  photosynthesis  
Elevated light levels reduce hemlock woolly adelgid infestation and improve carbon balance of infested eastern hemlock seedlings 期刊论文
FOREST ECOLOGY AND MANAGEMENT, 2017, 385
作者:  Brantley, Steven T.;  Mayfield, Albert E., III;  Jetton, Robert M.;  Miniat, Chelcy F.;  Zietlow, David R.;  Brown, Cindi L.;  Rhea, James R.
收藏  |  浏览/下载:19/0  |  提交时间:2019/04/09
Adelges tsugae  Invasive species  Nonstructural carbohydrates  Shade  Tsuga canadensis