GSTDTAP

浏览/检索结果: 共15条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
国际研究评估2010—2019年澳大拉西亚的碳收支 快报文章
气候变化快报,2024年第1期
作者:  裴惠娟
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:469/0  |  提交时间:2024/01/06
Australasia  Carbon Budget  Sources and Sinks  Comprehensive Assessment  
未来资源研究所发布世界碳定价数据库报告 快报文章
气候变化快报,2022年第04期
作者:  刘莉娜
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:788/0  |  提交时间:2022/02/20
Carbon Pricing  Sources  Methods  
Molecular tuning of CO2-to-ethylene conversion 期刊论文
NATURE, 2020, 577 (7791) : 509-+
作者:  Li, Fengwang;  39;Brien, Colin P.
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

The electrocatalytic reduction of carbon dioxide, powered by renewable electricity, to produce valuable fuels and feedstocks provides a sustainable and carbon-neutral approach to the storage of energy produced by intermittent renewable sources(1). However, the highly selective generation of economically desirable products such as ethylene from the carbon dioxide reduction reaction (CO2RR) remains a challenge(2). Tuning the stabilities of intermediates to favour a desired reaction pathway can improve selectivity(3-5), and this has recently been explored for the reaction on copper by controlling morphology(6), grain boundaries(7), facets(8), oxidation state(9) and dopants(10). Unfortunately, the Faradaic efficiency for ethylene is still low in neutral media (60 per cent at a partial current density of 7 milliamperes per square centimetre in the best catalyst reported so far(9)), resulting in a low energy efficiency. Here we present a molecular tuning strategy-the functionalization of the surface of electrocatalysts with organic molecules-that stabilizes intermediates for more selective CO2RR to ethylene. Using electrochemical, operando/in situ spectroscopic and computational studies, we investigate the influence of a library of molecules, derived by electro-dimerization of arylpyridiniums(11), adsorbed on copper. We find that the adhered molecules improve the stabilization of an '  atop-bound'  CO intermediate (that is, an intermediate bound to a single copper atom), thereby favouring further reduction to ethylene. As a result of this strategy, we report the CO2RR to ethylene with a Faradaic efficiency of 72 per cent at a partial current density of 230 milliamperes per square centimetre in a liquid-electrolyte flow cell in a neutral medium. We report stable ethylene electrosynthesis for 190 hours in a system based on a membrane-electrode assembly that provides a full-cell energy efficiency of 20 per cent. We anticipate that this may be generalized to enable molecular strategies to complement heterogeneous catalysts by stabilizing intermediates through local molecular tuning.


Electrocatalytic reduction of CO2 over copper can be made highly selective by '  tuning'  the copper surface with adsorbed organic molecules to stabilize intermediates for carbon-based fuels such as ethylene


  
Accelerated discovery of CO2 electrocatalysts using active machine learning 期刊论文
NATURE, 2020, 581 (7807) : 178-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:126/0  |  提交时间:2020/07/03

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy(1,2). Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy(3-8). Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products(9-16), and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 +/- 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction(17). Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.


  
Recycling and metabolic flexibility dictate life in the lower oceanic crust 期刊论文
NATURE, 2020, 579 (7798) : 250-+
作者:  Zhou, Peng;  Yang, Xing-Lou;  Wang, Xian-Guang;  Hu, Ben;  Zhang, Lei;  Zhang, Wei;  Si, Hao-Rui;  Zhu, Yan;  Li, Bei;  Huang, Chao-Lin;  Chen, Hui-Dong;  Chen, Jing;  Luo, Yun;  Guo, Hua;  Jiang, Ren-Di;  Liu, Mei-Qin;  Chen, Ying;  Shen, Xu-Rui;  Wang, Xi;  Zheng, Xiao-Shuang;  Zhao, Kai;  Chen, Quan-Jiao;  Deng, Fei;  Liu, Lin-Lin;  Yan, Bing;  Zhan, Fa-Xian;  Wang, Yan-Yi;  Xiao, Geng-Fu;  Shi, Zheng-Li
收藏  |  浏览/下载:59/0  |  提交时间:2020/05/13

The lithified lower oceanic crust is one of Earth'  s last biological frontiers as it is difficult to access. It is challenging for microbiota that live in marine subsurface sediments or igneous basement to obtain sufficient carbon resources and energy to support growth(1-3) or to meet basal power requirements(4) during periods of resource scarcity. Here we show how limited and unpredictable sources of carbon and energy dictate survival strategies used by low-biomass microbial communities that live 10-750 m below the seafloor at Atlantis Bank, Indian Ocean, where Earth'  s lower crust is exposed at the seafloor. Assays of enzyme activities, lipid biomarkers, marker genes and microscopy indicate heterogeneously distributed and viable biomass with ultralow cell densities (fewer than 2,000 cells per cm(3)). Expression of genes involved in unexpected heterotrophic processes includes those with a role in the degradation of polyaromatic hydrocarbons, use of polyhydroxyalkanoates as carbon-storage molecules and recycling of amino acids to produce compounds that can participate in redox reactions and energy production. Our study provides insights into how microorganisms in the plutonic crust are able to survive within fractures or porous substrates by coupling sources of energy to organic and inorganic carbon resources that are probably delivered through the circulation of subseafloor fluids or seawater.


  
Preindustrial (CH4)-C-14 indicates greater anthropogenic fossil CH4 emissions 期刊论文
NATURE, 2020, 578 (7795) : 409-+
作者:  Keener, Megan;  Hunt, Camden;  Carroll, Timothy G.;  Kampel, Vladimir;  Dobrovetsky, Roman;  Hayton, Trevor W.;  Menard, Gabriel
收藏  |  浏览/下载:54/0  |  提交时间:2020/05/13

Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era(1). Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate(2,3). Carbon-14 in CH4 ((CH4)-C-14) can be used to distinguish between fossil (C-14-free) CH4 emissions and contemporaneous biogenic sources  however, poorly constrained direct (CH4)-C-14 emissions from nuclear reactors have complicated this approach since the middle of the 20th century(4,5). Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year)(2,3) between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate  emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year(6,7). Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago(8), but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core (CH4)-C-14 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)-an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions(9,10).


Isotopic evidence from ice cores indicates that preindustrial-era geological methane emissions were lower than previously thought, suggesting that present-day emissions of methane from fossil fuels are underestimated.


  
Gram-scale bottom-up flash graphene synthesis 期刊论文
NATURE, 2020, 577 (7792) : 647-651
作者:  Long, Haizhen;  Zhang, Liwei;  Lv, Mengjie;  Wen, Zengqi;  Zhang, Wenhao;  Chen, Xiulan;  Zhang, Peitao;  Li, Tongqing;  Chang, Luyuan;  Jin, Caiwei;  Wu, Guozhao;  Wang, Xi;  Yang, Fuquan;  Pei, Jianfeng;  Chen, Ping;  Margueron, Raphael;  Deng, Haiteng;  Zhu, Mingzhao;  Li, Guohong
收藏  |  浏览/下载:36/0  |  提交时间:2020/07/03

Most bulk-scale graphene is produced by a top-down approach, exfoliating graphite, which often requires large amounts of solvent with high-energy mixing, shearing, sonication or electrochemical treatment(1-3). Although chemical oxidation of graphite to graphene oxide promotes exfoliation, it requires harsh oxidants and leaves the graphene with a defective perforated structure after the subsequent reduction step(3,4). Bottom-up synthesis of high-quality graphene is often restricted to ultrasmall amounts if performed by chemical vapour deposition or advanced synthetic organic methods, or it provides a defect-ridden structure if carried out in bulk solution(4-6). Here we show that flash Joule heating of inexpensive carbon sources-such as coal, petroleum coke, biochar, carbon black, discarded food, rubber tyres and mixed plastic waste-can afford gram-scale quantities of graphene in less than one second. The product, named flash graphene (FG) after the process used to produce it, shows turbostratic arrangement (that is, little order) between the stacked graphene layers. FG synthesis uses no furnace and no solvents or reactive gases. Yields depend on the carbon content of the source  when using a high-carbon source, such as carbon black, anthracitic coal or calcined coke, yields can range from 80 to 90 per cent with carbon purity greater than 99 per cent. No purification steps are necessary. Raman spectroscopy analysis shows a low-intensity or absent D band for FG, indicating that FG has among the lowest defect concentrations reported so far for graphene, and confirms the turbostratic stacking of FG, which is clearly distinguished from turbostratic graphite. The disordered orientation of FG layers facilitates its rapid exfoliation upon mixing during composite formation. The electric energy cost for FG synthesis is only about 7.2 kilojoules per gram, which could render FG suitable for use in bulk composites of plastic, metals, plywood, concrete and other building materials.


Flash Joule heating of inexpensive carbon sources is used to produce gram-scale quantities of high-quality graphene in under a second, without the need for a furnace, solvents or reactive gases.


  
A Factor and Trends Analysis of Multidecadal Lower Tropospheric Observations of Arctic Aerosol Composition, Black Carbon, Ozone, and Mercury at Alert, Canada 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (24) : 14133-14161
作者:  Sharma, S.;  Barrie, L. A.;  Magnusson, E.;  Brattstrom, G.;  Leaitch, W. R.;  Steffen, A.;  Landsberger, S.
收藏  |  浏览/下载:29/0  |  提交时间:2020/02/17
Arctic haze  Arctic aerosol components  sources and trends in Arctic pollution  black carbon  polar sunrise chemistry  detection of climate change  
Quantifying the contributions of various emission sources to black carbon and assessment of control strategies in western China 期刊论文
ATMOSPHERIC RESEARCH, 2019, 215: 178-192
作者:  Yang, Junhua;  Kang, Shichang;  Chen, Deliang;  Ji, Zhenming;  Tripathee, Lekhendra;  Chen, Xintong;  Du, Wentao;  Qiu, Guiqiang
收藏  |  浏览/下载:19/0  |  提交时间:2019/04/09
Black carbon  Emission sources in Asia  Tibetan Plateau  Highly populated region  Control strategies  
Dependency of Antarctic zooplankton species on ice algae-produced carbon suggests a sea ice-driven pelagic ecosystem during winter 期刊论文
GLOBAL CHANGE BIOLOGY, 2018, 24 (10) : 4667-4681
作者:  Kohlbach, Doreen;  Graeve, Martin;  Lange, Benjamin A.;  David, Carmen;  Schaafsma, Fokje L.;  van Franeker, Jan Andries;  Vortkamp, Martina;  Brandt, Angelika;  Flores, Hauke
收藏  |  浏览/下载:20/0  |  提交时间:2019/04/09
Antarctic food web  carbon sources  climate change  Compound-specific Stable Isotope Analysis  marker fatty acids  sea ice algae  under-ice community