GSTDTAP

浏览/检索结果: 共77条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Trophic control changes with season and nutrient loading in lakes 期刊论文
ECOLOGY LETTERS, 2020, 23 (8) : 1287-1297
作者:  Rogers, Tanya L.;  Munch, Stephan B.;  Stewart, Simon D.;  Palkovacs, Eric P.;  Giron-Nava, Alfredo;  Matsuzaki, Shin-ichiro S.;  Symons, Celia C.
收藏  |  浏览/下载:24/0  |  提交时间:2020/06/01
consumer control  empirical dynamic modelling  nutrients  resource control  species interactions  temperature  time series  
Diversity and coexistence are influenced by time-dependent species interactions in a predator-prey system 期刊论文
ECOLOGY LETTERS, 2020, 23 (6) : 983-993
作者:  Karakoc, Canan;  Clark, Adam Thomas;  Chatzinotas, Antonis
收藏  |  浏览/下载:34/0  |  提交时间:2020/05/13
Causality  diversity  EDMhelper  empirical dynamic modelling  predator-prey interactions  stability  
Physical-empirical models for prediction of seasonal rainfall extremes of Peninsular Malaysia 期刊论文
ATMOSPHERIC RESEARCH, 2020, 233
作者:  Pour, Sahar Hadi;  Abd Wahab, Ahmad Khairi;  Shahid, Shamsuddin
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/02
Extreme rainfall  Climate forecasting  Physical-empirical model  Machine learning algorithm  Recursive feature elimination  
A distributional code for value in dopamine-based reinforcement learning 期刊论文
NATURE, 2020, 577 (7792) : 671-+
作者:  House, Robert A.;  Maitra, Urmimala;  Perez-Osorio, Miguel A.;  Lozano, Juan G.;  Jin, Liyu;  Somerville, James W.;  Duda, Laurent C.;  Nag, Abhishek;  Walters, Andrew;  Zhou, Ke-Jin;  Roberts, Matthew R.;  Bruce, Peter G.
收藏  |  浏览/下载:79/0  |  提交时间:2020/07/03

Since its introduction, the reward prediction error theory of dopamine has explained a wealth of empirical phenomena, providing a unifying framework for understanding the representation of reward and value in the brain(1-3). According to the now canonical theory, reward predictions are represented as a single scalar quantity, which supports learning about the expectation, or mean, of stochastic outcomes. Here we propose an account of dopamine-based reinforcement learning inspired by recent artificial intelligence research on distributional reinforcement learning(4-6). We hypothesized that the brain represents possible future rewards not as a single mean, but instead as a probability distribution, effectively representing multiple future outcomes simultaneously and in parallel. This idea implies a set of empirical predictions, which we tested using single-unit recordings from mouse ventral tegmental area. Our findings provide strong evidence for a neural realization of distributional reinforcement learning.


Analyses of single-cell recordings from mouse ventral tegmental area are consistent with a model of reinforcement learning in which the brain represents possible future rewards not as a single mean of stochastic outcomes, as in the canonical model, but instead as a probability distribution.


  
Loopy Levy flights enhance tracer diffusion in active suspensions 期刊论文
NATURE, 2020, 579 (7799) : 364-+
作者:  Hu, Bo;  Jin, Chengcheng;  Zeng, Xing;  Resch, Jon M.;  Jedrychowski, Mark P.;  Yang, Zongfang;  Desai, Bhavna N.;  Banks, Alexander S.;  Lowell, Bradford B.;  Mathis, Diane;  Spiegelman, Bruce M.
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

A theoretical framework describing the hydrodynamic interactions between a passive particle and an active medium in out-of-equilibrium systems predicts long-range Levy flights for the diffusing particle driven by the density of the active component.


Brownian motion is widely used as a model of diffusion in equilibrium media throughout the physical, chemical and biological sciences. However, many real-world systems are intrinsically out of equilibrium owing to energy-dissipating active processes underlying their mechanical and dynamical features(1). The diffusion process followed by a passive tracer in prototypical active media, such as suspensions of active colloids or swimming microorganisms(2), differs considerably from Brownian motion, as revealed by a greatly enhanced diffusion coefficient(3-10) and non-Gaussian statistics of the tracer displacements(6,9,10). Although these characteristic features have been extensively observed experimentally, there is so far no comprehensive theory explaining how they emerge from the microscopic dynamics of the system. Here we develop a theoretical framework to model the hydrodynamic interactions between the tracer and the active swimmers, which shows that the tracer follows a non-Markovian coloured Poisson process that accounts for all empirical observations. The theory predicts a long-lived Levy flight regime(11) of the loopy tracer motion with a non-monotonic crossover between two different power-law exponents. The duration of this regime can be tuned by the swimmer density, suggesting that the optimal foraging strategy of swimming microorganisms might depend crucially on their density in order to exploit the Levy flights of nutrients(12). Our framework can be applied to address important theoretical questions, such as the thermodynamics of active systems(13), and practical ones, such as the interaction of swimming microorganisms with nutrients and other small particles(14) (for example, degraded plastic) and the design of artificial nanoscale machines(15).


  
A simple dynamic model explains the diversity of island birds worldwide 期刊论文
NATURE, 2020
作者:  Li, Junxue;  Wilson, C. Blake;  Cheng, Ran;  Lohmann, Mark;  Kavand, Marzieh;  Yuan, Wei;  Aldosary, Mohammed;  Agladze, Nikolay;  Wei, Peng;  Sherwin, Mark S.;  Shi, Jing
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

Colonization, speciation and extinction are dynamic processes that influence global patterns of species richness(1-6). Island biogeography theory predicts that the contribution of these processes to the accumulation of species diversity depends on the area and isolation of the island(7,8). Notably, there has been no robust global test of this prediction for islands where speciation cannot be ignored(9), because neither the appropriate data nor the analytical tools have been available. Here we address both deficiencies to reveal, for island birds, the empirical shape of the general relationships that determine how colonization, extinction and speciation rates co-vary with the area and isolation of islands. We compiled a global molecular phylogenetic dataset of birds on islands, based on the terrestrial avifaunas of 41 oceanic archipelagos worldwide (including 596 avian taxa), and applied a new analysis method to estimate the sensitivity of island-specific rates of colonization, speciation and extinction to island features (area and isolation). Our model predicts-with high explanatory power-several global relationships. We found a decline in colonization with isolation, a decline in extinction with area and an increase in speciation with area and isolation. Combining the theoretical foundations of island biogeography(7,8) with the temporal information contained in molecular phylogenies(10) proves a powerful approach to reveal the fundamental relationships that govern variation in biodiversity across the planet.


Using a global molecular phylogenetic dataset of birds on islands, the sensitivity of island-specific rates of colonization, speciation and extinction to island features (area and isolation) is estimated.


  
Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells 期刊论文
NATURE, 2020, 577 (7792) : 676-+
作者:  Zhao, Ruozhu;  Chen, Xin;  Ma, Weiwei;  Zhang, Jinyu;  Guo, Jie;  Zhong, Xiu;  Yao, Jiacheng;  Sun, Jiahui;  Rubinfien, Julian;  Zhou, Xuyu;  Wang, Jianbin;  Qi, Hai
收藏  |  浏览/下载:51/0  |  提交时间:2020/07/03

Empirical and anecdotal evidence has associated stress with accelerated hair greying (formation of unpigmented hairs)(1,2), but so far there has been little scientific validation of this link. Here we report that, in mice, acute stress leads to hair greying through the fast depletion of melanocyte stem cells. Using a combination of adrenalectomy, denervation, chemogenetics(3,4), cell ablation and knockout of the adrenergic receptor specifically in melanocyte stem cells, we find that the stress-induced loss of melanocyte stem cells is independent of immune attack or adrenal stress hormones. Instead, hair greying results from activation of the sympathetic nerves that innervate the melanocyte stem-cell niche. Under conditions of stress, the activation of these sympathetic nerves leads to burst release of the neurotransmitter noradrenaline (also known as norepinephrine). This causes quiescent melanocyte stem cells to proliferate rapidly, and is followed by their differentiation, migration and permanent depletion from the niche. Transient suppression of the proliferation of melanocyte stem cells prevents stress-induced hair greying. Our study demonstrates that neuronal activity that is induced by acute stress can drive a rapid and permanent loss of somatic stem cells, and illustrates an example in which the maintenance of somatic stem cells is directly influenced by the overall physiological state of the organism.


Stress induces hair greying in mice through depletion of melanocyte stem cells, which is mediated by the activation of sympathetic nerves rather than through immune attack or adrenal stress hormones.


  
Time-lagged correlations associated with interannual variations of pre-monsoon and post-monsoon precipitation in Myanmar and the Indochina Peninsula 期刊论文
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2019
作者:  Chhin, Rattana;  Shwe, Myint M.;  Yoden, Shigeo
收藏  |  浏览/下载:23/0  |  提交时间:2020/02/17
El Nino Modoki  El Nino-Southern Oscillation  Empirical Orthogonal Function  Indochina Peninsula  pre-monsoon and post-monsoon precipitation  time-lagged correlation  
Isolating spatiotemporally local mixed Rossby-gravity waves using multi-dimensional ensemble empirical mode decomposition 期刊论文
CLIMATE DYNAMICS, 2019
作者:  Sun, Jie;  Wu, Zhaohua
收藏  |  浏览/下载:22/0  |  提交时间:2020/02/17
Mixed Rossby-gravity waves  Spectra of tropical waves  Spatiotemporal inhomogeneity of tropical waves  Multi-dimensional ensemble empirical mode decomposition  
Evolution of tropical interannual sea surface temperature variability and its connection with boreal summer atmospheric circulations 期刊论文
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2019
作者:  Zhao, Yuheng;  Feng, Guolin;  Zheng, Zhihai;  Zhang, Daquan;  Jia, Zikang
收藏  |  浏览/下载:19/0  |  提交时间:2020/02/17
extended empirical orthogonal function (EEOF)  interannual  SST evolution  SSTA  tropical oceans