GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
Structure of nevanimibe-bound tetrameric human ACAT1 期刊论文
NATURE, 2020, 581 (7808) : 339-U214
作者:  Ma, Xiyu;  Claus, Lucas A. N.;  Leslie, Michelle E.;  Tao, Kai;  Wu, Zhiping;  Liu, Jun;  Yu, Xiao;  Li, Bo;  Zhou, Jinggeng;  Savatin, Daniel V.;  Peng, Junmin;  Tyler, Brett M.;  Heese, Antje;  Russinova, Eugenia;  He, Ping;  Shan, Libo
收藏  |  浏览/下载:51/0  |  提交时间:2020/07/03

The structure of human ACAT1 in complex with the inhibitor nevanimibe is resolved by cryo-electron microscopy.


Cholesterol is an essential component of mammalian cell membranes, constituting up to 50% of plasma membrane lipids. By contrast, it accounts for only 5% of lipids in the endoplasmic reticulum (ER)(1). The ER enzyme sterol O-acyltransferase 1 (also named acyl-coenzyme A:cholesterol acyltransferase, ACAT1) transfers a long-chain fatty acid to cholesterol to form cholesteryl esters that coalesce into cytosolic lipid droplets. Under conditions of cholesterol overload, ACAT1 maintains the low cholesterol concentration of the ER and thereby has an essential role in cholesterol homeostasis(2,3). ACAT1 has also been implicated in Alzheimer'  s disease(4), atherosclerosis(5) and cancers(6). Here we report a cryo-electron microscopy structure of human ACAT1 in complex with nevanimibe(7), an inhibitor that is in clinical trials for the treatment of congenital adrenal hyperplasia. The ACAT1 holoenzyme is a tetramer that consists of two homodimers. Each monomer contains nine transmembrane helices (TMs), six of which (TM4-TM9) form a cavity that accommodates nevanimibe and an endogenous acyl-coenzyme A. This cavity also contains a histidine that has previously been identified as essential for catalytic activity(8). Our structural data and biochemical analyses provide a physical model to explain the process of cholesterol esterification, as well as details of the interaction between nevanimibe and ACAT1, which may help to accelerate the development of ACAT1 inhibitors to treat related diseases.


  
Climate change does not affect the seafood quality of a commonly targeted fish 期刊论文
GLOBAL CHANGE BIOLOGY, 2019, 25 (2) : 699-707
作者:  Coleman, Melinda A.;  Butcherine, Peter;  Kelaher, Brendan P.;  Broadhurst, Matt K.;  March, Duane T.;  Provost, Euan J.;  David, Jamie;  Benkendorff, Kirsten
收藏  |  浏览/下载:24/0  |  提交时间:2019/04/09
Acanthopagrus australis  acidification  climate change  fatty acid  fish  fishery  lipid  nutrition  seafood  temperature  yellowfin bream  
Elucidating the sponge stress response; lipids and fatty acids can facilitate survival under future climate scenarios 期刊论文
GLOBAL CHANGE BIOLOGY, 2018, 24 (7) : 3130-3144
作者:  Bennett, Holly;  Bell, James J.;  Davy, Simon K.;  Webster, Nicole S.;  Francis, David S.
收藏  |  浏览/下载:10/0  |  提交时间:2019/04/09
climate change  coral reef  fatty acid  heterotroph  lipid  mechanism  ocean acidification  ocean warming  phototroph  porifera  
How much bioenergy can Europe produce without harming the environment? 科技报告
来源:European Environment Agency (EEA). 出版年: 2006
作者:  [null]
收藏  |  浏览/下载:43/0  |  提交时间:2019/04/05
forestry bioenergy potential  EOF  carbon dioxide  CAP  biomass  HNV  bioenergy crops  Biomass Action Plan  high nature value  second generation biofuels  FAME  bioenergy  forest stewardship council  environmentally-oriented farming  fatty acid methyl eth