GSTDTAP

浏览/检索结果: 共6条,第1-6条 帮助

已选(0)清除 条数/页:   排序方式:
Ionic solids from common colloids 期刊论文
NATURE, 2020, 580 (7804) : 487-+
作者:  Delord, T.;  Huillery, P.;  Nicolas, L.;  Hetet, G.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/03

Oppositely charged colloidal particles are assembled in water through an approach that allows electrostatic interactions to be precisely tuned to generate macroscopic single crystals.


From rock salt to nanoparticle superlattices, complex structure can emerge from simple building blocks that attract each other through Coulombic forces(1-4). On the micrometre scale, however, colloids in water defy the intuitively simple idea of forming crystals from oppositely charged partners, instead forming non-equilibrium structures such as clusters and gels(5-7). Although various systems have been engineered to grow binary crystals(8-11), native surface charge in aqueous conditions has not been used to assemble crystalline materials. Here we form ionic colloidal crystals in water through an approach that we refer to as polymer-attenuated Coulombic self-assembly. The key to crystallization is the use of a neutral polymer to keep particles separated by well defined distances, allowing us to tune the attractive overlap of electrical double layers, directing particles to disperse, crystallize or become permanently fixed on demand. The nucleation and growth of macroscopic single crystals is demonstrated by using the Debye screening length to fine-tune assembly. Using a variety of colloidal particles and commercial polymers, ionic colloidal crystals isostructural to caesium chloride, sodium chloride, aluminium diboride and K4C60 are selected according to particle size ratios. Once fixed by simply diluting out solution salts, crystals are pulled out of the water for further manipulation, demonstrating an accurate translation from solution-phase assembly to dried solid structures. In contrast to other assembly approaches, in which particles must be carefully engineered to encode binding information(12-18), polymer-attenuated Coulombic self-assembly enables conventional colloids to be used as model colloidal ions, primed for crystallization.


  
Fine-Particle Deposition, Retention, and Resuspension Within a Sand-Bedded Stream Are Determined by Streambed Morphodynamics 期刊论文
WATER RESOURCES RESEARCH, 2019, 55 (12) : 10303-10318
作者:  Phillips, Colin B.;  Dallmann, Jonathan D.;  Jerolmack, Douglas J.;  Packman, Aaron, I
收藏  |  浏览/下载:6/0  |  提交时间:2020/02/16
fine particles  morphodynamics  bed forms  stream  flood  sediment  
Water Soluble Organic Nitrogen (WSON) in Ambient Fine Particles Over a Megacity in South China: Spatiotemporal Variations and Source Apportionment 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (23)
作者:  Yu, Xu;  Yu, Qingqing;  Zhu, Ming;  Tang, Mingjin;  Li, Sheng;  Yang, Weiqiang;  Zhang, Yanli;  Deng, Wei;  Li, Guanghui;  Yu, Yuegang;  Huang, Zhonghui;  Song, Wei;  Ding, Xiang;  Hu, Qihou;  Li, Jun;  Bi, Xinhui;  Wang, Xinming
收藏  |  浏览/下载:13/0  |  提交时间:2019/04/09
water soluble organic nitrogen (WSON)  fine particles (PM2 5)  biomass burning  secondary organic aerosols  spatiotemporal variation  source apportionment  
Ground level ice nuclei particle measurements including Saharan dust events at a Po Valley rural site (San Pietro Capofiume, Italy) 期刊论文
ATMOSPHERIC RESEARCH, 2017, 186
作者:  Belosi, F.;  Rinaldi, M.;  Decesari, S.;  Tarozzi, L.;  Nicosia, A.;  Santachiara, G.
收藏  |  浏览/下载:4/0  |  提交时间:2019/04/09
Ice nuclei particles  Water saturation ratio  Fine aerosol  Coarse aerosol  
Benthic biofilm controls on fine particle dynamics in streams 期刊论文
WATER RESOURCES RESEARCH, 2017, 53 (1)
作者:  Roche, K. R.;  Drummond, J. D.;  Boano, F.;  Packman, A. I.;  Battin, T. J.;  Hunter, W. R.
收藏  |  浏览/下载:7/0  |  提交时间:2019/04/09
benthic biofilm  microbial biofilm  fine particles  stochastic model  streams  optical coherence tomography  
Air pollution at street level in European cities 科技报告
来源:European Environment Agency (EEA). 出版年: 2006
作者:  [null]
收藏  |  浏览/下载:3/0  |  提交时间:2019/04/05
street increment  air quality  PM10  air pollution  nitrogen oxides  urban air quality  PM2.5  particulate matter  human health  NOx  emissions from transport  nitrogen dioxide  NO2  fine particles  AirBase