GSTDTAP

浏览/检索结果: 共11条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
A reference map of the human binary protein interactome 期刊论文
NATURE, 2020, 580 (7803) : 402-+
作者:  Fan, Chen;  Sukomon, Nattakan;  Flood, Emelie;  Rheinberger, Jan;  Allen, Toby W.;  Nimigean, Crina M.
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Global insights into cellular organization and genome function require comprehensive understanding of the interactome networks that mediate genotype-phenotype relationships(1,2). Here we present a human '  all-by-all'  reference interactome map of human binary protein interactions, or '  HuRI'  . With approximately 53,000 protein-protein interactions, HuRI has approximately four times as many such interactions as there are high-quality curated interactions from small-scale studies. The integration of HuRI with genome(3), transcriptome(4) and proteome(5) data enables cellular function to be studied within most physiological or pathological cellular contexts. We demonstrate the utility of HuRI in identifying the specific subcellular roles of protein-protein interactions. Inferred tissue-specific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms that might underlie tissue-specific phenotypes of Mendelian diseases. HuRI is a systematic proteome-wide reference that links genomic variation to phenotypic outcomes.


  
U1 snRNP regulates chromatin retention of noncoding RNAs 期刊论文
NATURE, 2020
作者:  Dehollain, J. P.;  Mukhopadhyay, U.;  Michal, V. P.;  Wang, Y.;  Wunsch, B.;  Reichl, C.;  Wegscheider, W.;  Rudner, M. S.;  Demler, E.;  Vandersypen, L. M. K.
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Long noncoding RNAs (lncRNAs) and promoter- or enhancer-associated unstable transcripts locate preferentially to chromatin, where some regulate chromatin structure, transcription and RNA processing(1-13). Although several RNA sequences responsible for nuclear localization have been identified-such as repeats in the lncRNA Xist and Alu-like elements in long RNAs14-16-how lncRNAs as a class are enriched at chromatin remains unknown. Here we describe a random, mutagenesis-coupled, high-throughput method that we name '  RNA elements for subcellular localization by sequencing'  (mutREL-seq). Using this method, we discovered an RNA motif that recognizes the U1 small nuclear ribonucleoprotein (snRNP) and is essential for the localization of reporter RNAs to chromatin. Across the genome, chromatin-bound lncRNAs are enriched with 5 '  splice sites and depleted of 3 '  splice sites, and exhibit high levels of U1 snRNA binding compared with cytoplasm-localized messenger RNAs. Acute depletion of U1 snRNA or of the U1 snRNP protein component SNRNP70 markedly reduces the chromatin association of hundreds of lncRNAs and unstable transcripts, without altering the overall transcription rate in cells. In addition, rapid degradation of SNRNP70 reduces the localization of both nascent and polyadenylated lncRNA transcripts to chromatin, and disrupts the nuclear and genome-wide localization of the lncRNA Malat1. Moreover, U1 snRNP interacts with transcriptionally engaged RNA polymerase II. These results show that U1 snRNP acts widely to tether and mobilize lncRNAs to chromatin in a transcription-dependent manner. Our findings have uncovered a previously unknown role of U1 snRNP beyond the processing of precursor mRNA, and provide molecular insight into how lncRNAs are recruited to regulatory sites to carry out chromatin-associated functions.


Long noncoding RNAs and certain unstable transcripts tend to localize to chromatin, in a process that is shown here to depend on an RNA motif that recognizes the small nuclear ribonuclear protein U1, and to rely on transcription.


  
CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities 期刊论文
NATURE, 2020
作者:  Yang, Jianfeng;  Faccenda, Manuele
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

Cancer genomics studies have identified thousands of putative cancer driver genes(1). Development of high-throughput and accurate models to define the functions of these genes is a major challenge. Here we devised a scalable cancer-spheroid model and performed genome-wide CRISPR screens in 2D monolayers and 3D lung-cancer spheroids. CRISPR phenotypes in 3D more accurately recapitulated those of in vivo tumours, and genes with differential sensitivities between 2D and 3D conditions were highly enriched for genes that are mutated in lung cancers. These analyses also revealed drivers that are essential for cancer growth in 3D and in vivo, but not in 2D. Notably, we found that carboxypeptidase D is responsible for removal of a C-terminal RKRR motif(2) from the alpha-chain of the insulin-like growth factor 1 receptor that is critical for receptor activity. Carboxypeptidase D expression correlates with patient outcomes in patients with lung cancer, and loss of carboxypeptidase D reduced tumour growth. Our results reveal key differences between 2D and 3D cancer models, and establish a generalizable strategy for performing CRISPR screens in spheroids to reveal cancer vulnerabilities.


CRISPR screens in a 3D spheroid cancer model system more accurately recapitulate cancer phenotypes than existing 2D models and were used to identify carboxypeptidase D, acting via the IGF1R, as a 3D-specific driver of cancer growth.


  
Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway 期刊论文
NATURE, 2020
作者:  Moral, John Alec;  Leung, Joanne;  Rojas, Luis A.;  Ruan, Jennifer;  Zhao, Julia;  Sethna, Zachary;  Ramnarain, Anita;  Gasmi, Billel;  Gururajan, Murali;  Redmond, David;  Askan, Gokce;  Bhanot, Umesh;  Elyada, Ela;  Park, Youngkyu;  Tuveson, David A.
收藏  |  浏览/下载:20/0  |  提交时间:2020/07/03

In mammalian cells, mitochondrial dysfunction triggers the integrated stress response, in which the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2 alpha) results in the induction of the transcription factor ATF4(1-3). However, how mitochondrial stress is relayed to ATF4 is unknown. Here we show that HRI is the eIF2 alpha kinase that is necessary and sufficient for this relay. In a genome-wide CRISPR interference screen, we identified factors upstream of HRI: OMA1, a mitochondrial stress-activated protease  and DELE1, a little-characterized protein that we found was associated with the inner mitochondrial membrane. Mitochondrial stress stimulates OMA1-dependent cleavage of DELE1 and leads to the accumulation of DELE1 in the cytosol, where it interacts with HRI and activates the eIF2 alpha kinase activity of HRI. In addition, DELE1 is required for ATF4 translation downstream of eIF2 alpha phosphorylation. Blockade of the OMA1-DELE1-HRI pathway triggers an alternative response in which specific molecular chaperones are induced. The OMA1-DELE1-HRI pathway therefore represents a potential therapeutic target that could enable fine-tuning of the integrated stress response for beneficial outcomes in diseases that involve mitochondrial dysfunction.


A genome-wide CRISPR interference screen shows that a signalling pathway involving OMA1, DELE1 and the eIF2 alpha kinase HRI relays mitochondrial stress to the cytosol to trigger the integrated stress response.


  
Two conserved epigenetic regulators prevent healthy ageing 期刊论文
NATURE, 2020
作者:  Yoshida, Kenichi;  Gowers, Kate H. C.;  Lee-Six, Henry;  Chandrasekharan, Deepak P.;  Coorens, Tim;  Maughan, Elizabeth F.;  Beal, Kathryn;  Menzies, Andrew;  Millar, Fraser R.;  Anderson, Elizabeth;  Clarke, Sarah E.;  Pennycuick, Adam;  Thakrar, Ricky M.;  Butler, Colin R.;  Kakiuchi, Nobuyuki;  Hirano, Tomonori;  Hynds, Robert E.;  Stratton, Michael R.;  Martincorena, Inigo;  Janes, Sam M.;  Campbell, Peter J.
收藏  |  浏览/下载:64/0  |  提交时间:2020/07/03

It has long been assumed that lifespan and healthspan correlate strongly, yet the two can be clearly dissociated(1-6). Although there has been a global increase in human life expectancy, increasing longevity is rarely accompanied by an extended healthspan(4,7). Thus, understanding the origin of healthy behaviours in old people remains an important and challenging task. Here we report a conserved epigenetic mechanism underlying healthy ageing. Through genome-wide RNA-interference-based screening of genes that regulate behavioural deterioration in ageing Caenorhabditis elegans, we identify 59 genes as potential modulators of the rate of age-related behavioural deterioration. Among these modulators, we found that a neuronal epigenetic reader, BAZ-2, and a neuronal histone 3 lysine 9 methyltransferase, SET-6, accelerate behavioural deterioration in C. elegans by reducing mitochondrial function, repressing the expression of nuclear-encoded mitochondrial proteins. This mechanism is conserved in cultured mouse neurons and human cells. Examination of human databases(8,9) shows that expression of the human orthologues of these C. elegans regulators, BAZ2B and EHMT1, in the frontal cortex increases with age and correlates positively with the progression of Alzheimer'  s disease. Furthermore, ablation of Baz2b, the mouse orthologue of BAZ-2, attenuates age-dependent body-weight gain and prevents cognitive decline in ageing mice. Thus our genome-wide RNA-interference screen in C. elegans has unravelled conserved epigenetic negative regulators of ageing, suggesting possible ways to achieve healthy ageing.


Two epigenetic regulators-identified in an RNA interference screen in Caenhorhabditis elegans, and conserved in mammals-diminish mitochondrial function and accelerate the age-related deterioration of behaviour.


  
Ancient West African foragers in the context of African population history 期刊论文
NATURE, 2020, 577 (7792) : 665-+
作者:  Grunwald, Hannah A.;  Gantz, Valentino M.;  Poplawski, Gunnar;  Xu, Xiang-Ru S.;  Bier, Ethan;  Cooper, Kimberly L.
收藏  |  浏览/下载:41/0  |  提交时间:2020/07/03

Genome-wide ancestry profiles of four individuals, dating to 8,000 and 3,000 years before present, from the archaeological site of Shum Laka (Cameroon) shed light on the deep population history of sub-Saharan Africa.


Our knowledge of ancient human population structure in sub-Saharan Africa, particularly prior to the advent of food production, remains limited. Here we report genome-wide DNA data from four children-two of whom were buried approximately 8,000 years ago and two 3,000 years ago-from Shum Laka (Cameroon), one of the earliest known archaeological sites within the probable homeland of the Bantu language group(1-11). One individual carried the deeply divergent Y chromosome haplogroup A00, which today is found almost exclusively in the same region(12,13). However, the genome-wide ancestry profiles of all four individuals are most similar to those of present-day hunter-gatherers from western Central Africa, which implies that populations in western Cameroon today-as well as speakers of Bantu languages from across the continent-are not descended substantially from the population represented by these four people. We infer an Africa-wide phylogeny that features widespread admixture and three prominent radiations, including one that gave rise to at least four major lineages deep in the history of modern humans.


  
MAFG-driven astrocytes promote CNS inflammation 期刊论文
NATURE, 2020, 578 (7796) : 593-+
作者:  Clark, Peter U.;  He, Feng;  Golledge, Nicholas R.;  Mitrovica, Jerry X.;  Dutton, Andrea;  Hoffman, Jeremy S.;  Dendy, Sarah
收藏  |  浏览/下载:62/0  |  提交时间:2020/07/03

Multiple sclerosis is a chronic inflammatory disease of the CNS1. Astrocytes contribute to the pathogenesis of multiple sclerosis(2), but little is known about the heterogeneity of astrocytes and its regulation. Here we report the analysis of astrocytes in multiple sclerosis and its preclinical model experimental autoimmune encephalomyelitis (EAE) by single-cell RNA sequencing in combination with cell-specific Ribotag RNA profiling, assay for transposase-accessible chromatin with sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing (ChIP-seq), genome-wide analysis of DNA methylation and in vivo CRISPR-Cas9-based genetic perturbations. We identified astrocytes in EAE and multiple sclerosis that were characterized by decreased expression of NRF2 and increased expression of MAFG, which cooperates with MAT2 alpha to promote DNA methylation and represses antioxidant and anti-inflammatory transcriptional programs. Granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling in astrocytes drives the expression of MAFG and MAT2 alpha and pro-inflammatory transcriptional modules, contributing to CNS pathology in EAE and, potentially, multiple sclerosis. Our results identify candidate therapeutic targets in multiple sclerosis.


Single-cell RNA sequencing of cells from humans with multiple sclerosis and mice with a model of the disease identifies a population of disease-promoting astrocytes in which anti-oxidant and anti-inflammatory proteins are suppressed.


  
Novel tau filament fold in corticobasal degeneration 期刊论文
NATURE, 2020, 580 (7802) : 283-+
作者:  Izumi, Natsuko;  Shoji, Keisuke;  Suzuki, Yutaka;  Katsuma, Susumu;  Tomari, Yukihide
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

Cyro-electron microscopy of tau filaments from people with corticobasal degeneration reveals a previously unseen four-layered fold, distinct from the filament structures seen in Alzheimer'  s disease, Pick'  s disease and chronic traumatic encephalopathy.


Corticobasal degeneration (CBD) is a neurodegenerative tauopathy-a class of disorders in which the tau protein forms insoluble inclusions in the brain-that is characterized by motor and cognitive disturbances(1-3). The H1 haplotype of MAPT (the tau gene) is present in cases of CBD at a higher frequency than in controls(4,5), and genome-wide association studies have identified additional risk factors(6). By histology, astrocytic plaques are diagnostic of CBD7,8  by SDS-PAGE, so too are detergent-insoluble, 37 kDa fragments of tau(9). Like progressive supranuclear palsy, globular glial tauopathy and argyrophilic grain disease(10), CBD is characterized by abundant filamentous tau inclusions that are made of isoforms with four microtubule-binding repeats(11-15). This distinguishes such '  4R'  tauopathies from Pick'  s disease (the filaments of which are made of three-repeat (3R) tau isoforms) and from Alzheimer'  s disease and chronic traumatic encephalopathy (CTE) (in which both 3R and 4R isoforms are found in the filaments)(16). Here we use cryo-electron microscopy to analyse the structures of tau filaments extracted from the brains of three individuals with CBD. These filaments were identical between cases, but distinct from those seen in Alzheimer'  s disease, Pick'  s disease and CTE17-19. The core of a CBD filament comprises residues lysine 274 to glutamate 380 of tau, spanning the last residue of the R1 repeat, the whole of the R2, R3 and R4 repeats, and 12 amino acids after R4. The core adopts a previously unseen four-layered fold, which encloses a large nonproteinaceous density. This density is surrounded by the side chains of lysine residues 290 and 294 from R2 and lysine 370 from the sequence after R4.


  
Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids 期刊论文
NATURE, 2020
作者:  Nixon, Christopher C.;  Mavigner, Maud;  Sampey, Gavin C.;  Brooks, Alyssa D.;  Spagnuolo, Rae Ann;  Irlbeck, David M.;  Mattingly, Cameron;  Ho, Phong T.;  Schoof, Nils;  Cammon, Corinne G.;  Tharp, Greg K.;  Kanke, Matthew;  Wang, Zhang;  Cleary, Rachel A.;  Upadhyay, Amit A.;  De, Chandrav;  Wills, Saintedym R.;  Falcinelli, Shane D.;  Galardi, Cristin;  Walum, Hasse;  Schramm, Nathaniel J.;  Deutsch, Jennifer;  Lifson, Jeffrey D.;  Fennessey, Christine M.;  Keele, Brandon F.;  Jean, Sherrie;  Maguire, Sean;  Liao, Baolin;  Browne, Edward P.;  Ferris, Robert G.;  Brehm, Jessica H.;  Favre, David;  Vanderford, Thomas H.;  Bosinger, Steven E.;  Jones, Corbin D.;  Routy, Jean-Pierre;  Archin, Nancie M.;  Margolis, David M.;  Wahl, Angela;  Dunham, Richard M.;  Silvestri, Guido;  Chahroudi, Ann;  Garcia, J. Victor
收藏  |  浏览/下载:54/0  |  提交时间:2020/07/03

Single-cell RNA sequencing and spatial transcriptomics reveal that the somitogenesis clock is active in mouse gastruloids, which can be induced to generate somites with the correct rostral-caudal patterning.


Gastruloids are three-dimensional aggregates of embryonic stem cells that display key features of mammalian development after implantation, including germ-layer specification and axial organization(1-3). To date, the expression pattern of only a small number of genes in gastruloids has been explored with microscopy, and the extent to which genome-wide expression patterns in gastruloids mimic those in embryos is unclear. Here we compare mouse gastruloids with mouse embryos using single-cell RNA sequencing and spatial transcriptomics. We identify various embryonic cell types that were not previously known to be present in gastruloids, and show that key regulators of somitogenesis are expressed similarly between embryos and gastruloids. Using live imaging, we show that the somitogenesis clock is active in gastruloids and has dynamics that resemble those in vivo. Because gastruloids can be grown in large quantities, we performed a small screen that revealed how reduced FGF signalling induces a short-tail phenotype in embryos. Finally, we demonstrate that embedding in Matrigel induces gastruloids to generate somites with the correct rostral-caudal patterning, which appear sequentially in an anterior-to-posterior direction over time. This study thus shows the power of gastruloids as a model system for exploring development and somitogenesis in vitro in a high-throughput manner.


  
Patterns of somatic structural variation in human cancer genomes 期刊论文
NATURE, 2020, 578 (7793) : 112-+
作者:  Wan, Liling;  Chong, Shasha;  Xuan, Fan;  Liang, Angela;  Cui, Xiaodong;  Gates, Leah;  Carroll, Thomas S.;  Li, Yuanyuan;  Feng, Lijuan;  Chen, Guochao;  Wang, Shu-Ping;  Ortiz, Michael V.;  Daley, Sara K.;  Wang, Xiaolu;  Xuan, Hongwen;  Kentsis, Alex;  Muir, Tom W.;  Roeder, Robert G.;  Li, Haitao;  Li, Wei;  Tjian, Robert;  Wen, Hong;  Allis, C. David
收藏  |  浏览/下载:47/0  |  提交时间:2020/07/03

A key mutational process in cancer is structural variation, in which rearrangements delete, amplify or reorder genomic segments that range in size from kilobases to whole chromosomes(1-7). Here we develop methods to group, classify and describe somatic structural variants, using data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumour types(8). Sixteen signatures of structural variation emerged. Deletions have a multimodal size distribution, assort unevenly across tumour types and patients, are enriched in late-replicating regions and correlate with inversions. Tandem duplications also have a multimodal size distribution, but are enriched in early-replicating regions-as are unbalanced translocations. Replication-based mechanisms of rearrangement generate varied chromosomal structures with low-level copy-number gains and frequent inverted rearrangements. One prominent structure consists of 2-7 templates copied from distinct regions of the genome strung together within one locus. Such cycles of templated insertions correlate with tandem duplications, and-in liver cancerfrequently activate the telomerase gene TERT. A wide variety of rearrangement processes are active in cancer, which generate complex configurations of the genome upon which selection can act.