GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
Sialylation of immunoglobulin E is a determinant of allergic pathogenicity 期刊论文
NATURE, 2020, 582 (7811) : 265-+
作者:  Abdul-Masih, Michael;  Banyard, Gareth;  Bodensteiner, Julia;  Bordier, Emma;  Bowman, Dominic M.;  Dsilva, Karan;  Fabry, Matthias;  Hawcroft, Calum;  Mahy, Laurent;  Marchant, Pablo;  Raskin, Gert;  Reggiani, Maddalena;  Shenar, Tomer;  Tkachenko, Andrew;  Van Winckel, Hans;  Vermeylen, Lore;  Sana, Hugues
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

A specific type of glycosylation-sialylation-is more common on immunoglobulin E from individuals with a peanut allergys than from non-atopic people, suggesting that it has a role in regulating anaphylaxis.


Approximately one-third of the world'  s population suffers from allergies(1). Exposure to allergens crosslinks immunoglobulin E (IgE) antibodies that are bound to mast cells and basophils, triggering the release of inflammatory mediators, including histamine(2). Although IgE is absolutely required for allergies, it is not understood why total and allergen-specific IgE concentrations do not reproducibly correlate with allergic disease(3-5). It is well-established that glycosylation of IgG dictates its effector function and has disease-specific patterns. However, whether IgE glycans differ in disease states or affect biological activity is completely unknown(6). Here we perform an unbiased examination of glycosylation patterns of total IgE from individuals with a peanut allergy and from non-atopic individuals without allergies. Our analysis reveals an increase in sialic acid content on total IgE from individuals with a peanut allergy compared with non-atopic individuals. Removal of sialic acid from IgE attenuates effector-cell degranulation and anaphylaxis in several functional models of allergic disease. Therapeutic interventions-including removing sialic acid from cell-bound IgE with a neuraminidase enzyme targeted towards the IgE receptor Fc epsilon RI, and administering asialylated IgE-markedly reduce anaphylaxis. Together, these results establish IgE glycosylation, and specifically sialylation, as an important regulator of allergic disease.


  
Laminarin is a major molecule in the marine carbon cycle 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (12) : 6599-6607
作者:  Becker, Stefan;  Tebben, Jan;  Coffinet, Sarah;  Wiltshire, Karen;  Iversen, Morten Hvitfeldt;  Harder, Tilmann;  Hinrichs, Kai-Uwe;  Hehemann, Jan-Hendrik
收藏  |  浏览/下载:18/0  |  提交时间:2020/05/13
carbon cycle  laminarin  diatoms  glycans  diel cycle  
Synthesis of rare sugar isomers through site-selective epimerization 期刊论文
NATURE, 2020: 403-+
作者:  Jackson, Hartland W.;  Fischer, Jana R.;  Zanotelli, Vito R. T.;  Ali, H. Raza;  Mechera, Robert;  Soysal, Savas D.;  Moch, Holger;  Muenst, Simone;  Varga, Zsuzsanna;  Weber, Walter P.;  Bodenmiller, Bernd
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

Glycans have diverse physiological functions, ranging from energy storage and structural integrity to cell signalling and the regulation of intracellular processes(1). Although biomass-derived carbohydrates (such as d-glucose, d-xylose and d-galactose) are extracted on commercial scales, and serve as renewable chemical feedstocks and building blocks(2,3), there are hundreds of distinct monosaccharides that typically cannot be isolated from their natural sources and must instead be prepared through multistep chemical or enzymatic syntheses(4,5). These '  rare'  sugars feature prominently in bioactive natural products and pharmaceuticals, including antiviral, antibacterial, anticancer and cardiac drugs(6,7). Here we report the preparation of rare sugar isomers directly from biomass carbohydrates through site-selective epimerization reactions. Mechanistic studies establish that these reactions proceed under kinetic control, through sequential steps of hydrogen-atom abstraction and hydrogen-atom donation mediated by two distinct catalysts. This synthetic strategy provides concise and potentially extensive access to this valuable class of natural compounds.


Various rare sugars that cannot be isolated from natural sources are synthesized using light-driven epimerization, a process which may find application in other synthetic scenarios.