GSTDTAP

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
A cold, massive, rotating disk galaxy 1.5 billion years after the Big Bang 期刊论文
NATURE, 2020, 581 (7808) : 269-+
作者:  Poplawski, Gunnar H. D.;  Kawaguchi, Riki;  Van Niekerk, Erna;  Lu, Paul;  Mehta, Neil;  Canete, Philip;  Lie, Richard;  Dragatsis, Ioannis;  Meves, Jessica M.;  Zheng, Binhai;  Coppola, Giovanni;  Tuszynski, Mark H.
收藏  |  浏览/下载:81/0  |  提交时间:2020/07/03

Massive disk galaxies like the Milky Way are expected to form at late times in traditional models of galaxy formation(1,2), but recent numerical simulations suggest that such galaxies could form as early as a billion years after the Big Bang through the accretion of cold material and mergers(3,4). Observationally, it has been difficult to identify disk galaxies in emission at high redshift(5,6) in order to discern between competing models of galaxy formation. Here we report imaging, with a resolution of about 1.3 kiloparsecs, of the 158-micrometre emission line from singly ionized carbon, the far-infrared dust continuum and the near-ultraviolet continuum emission from a galaxy at a redshift of 4.2603, identified by detecting its absorption of quasar light. These observations show that the emission arises from gas inside a cold, dusty, rotating disk with a rotational velocity of about 272 kilometres per second. The detection of emission from carbon monoxide in the galaxy yields a molecular mass that is consistent with the estimate from the ionized carbon emission of about 72 billion solar masses. The existence of such a massive, rotationally supported, cold disk galaxy when the Universe was only 1.5 billion years old favours formation through either cold-mode accretion or mergers, although its large rotational velocity and large content of cold gas remain challenging to reproduce with most numerical simulations(7,8).


A massive rotating disk galaxy was formed a mere 1.5 billion years after the Big Bang, a surprisingly short time after the origin of the Universe.


  
Two-dimensional halide perovskite lateral epitaxial heterostructures 期刊论文
NATURE, 2020, 580 (7805) : 614-+
作者:  Cabrita, Rita;  Lauss, Martin;  Sanna, Adriana;  Donia, Marco;  Larsen, Mathilde;  Mitra, Shamik;  Johansson, Iva;  Phung, Bengt;  Harbst, Katja;  Vallon-Christersson, Johan;  van Schoiack, Alison;  Lovgren, Kristina;  Warren, Sarah;  Jirstrom, Karin;  Olsson, Hakan;  Pietras, Kristian;  Ingvar, Christian;  Isaksson, Karolin
收藏  |  浏览/下载:45/0  |  提交时间:2020/07/03

Epitaxial heterostructures based on oxide perovskites and III-V, II-VI and transition metal dichalcogenide semiconductors form the foundation of modern electronics and optoelectronics(1-7). Halide perovskites-an emerging family of tunable semiconductors with desirable properties-are attractive for applications such as solution-processed solar cells, light-emitting diodes, detectors and lasers(8-15). Their inherently soft crystal lattice allows greater tolerance to lattice mismatch, making them promising for heterostructure formation and semiconductor integration(16,17). Atomically sharp epitaxial interfaces are necessary to improve performance and for device miniaturization. However, epitaxial growth of atomically sharp heterostructures of halide perovskites has not yet been achieved, owing to their high intrinsic ion mobility, which leads to interdiffusion and large junction widths(18-21), and owing to their poor chemical stability, which leads to decomposition of prior layers during the fabrication of subsequent layers. Therefore, understanding the origins of this instability and identifying effective approaches to suppress ion diffusion are of great importance(22-26). Here we report an effective strategy to substantially inhibit in-plane ion diffusion in two-dimensional halide perovskites by incorporating rigid pi-conjugated organic ligands. We demonstrate highly stable and tunable lateral epitaxial heterostructures, multiheterostructures and superlattices. Near-atomically sharp interfaces and epitaxial growth are revealed by low-dose aberration-corrected high-resolution transmission electron microscopy. Molecular dynamics simulations confirm the reduced heterostructure disorder and larger vacancy formation energies of the two-dimensional perovskites in the presence of conjugated ligands. These findings provide insights into the immobilization and stabilization of halide perovskite semiconductors and demonstrate a materials platform for complex and molecularly thin superlattices, devices and integrated circuits.


An epitaxial growth strategy that improves the stability of two-dimensional halide perovskites by inhibiting ion diffusion in their heterostructures using rigid pi-conjugated ligands is demonstrated, and shows near-atomically sharp interfaces.


  
Structure of the M2 muscarinic receptor-beta-arrestin complex in a lipid nanodisc 期刊论文
NATURE, 2020, 579 (7798) : 297-+
作者:  Gate, David;  Saligrama, Naresha;  Leventhal, Olivia;  Yang, Andrew C.;  Unger, Michael S.;  Middeldorp, Jinte;  Chen, Kelly;  Lehallier, Benoit;  Channappa, Divya;  De Los Santos, Mark B.;  McBride, Alisha;  Pluvinage, John;  Elahi, Fanny;  Tam, Grace Kyin-Ye;  Kim, Yongha;  Greicius, Michael;  Wagner, Anthony D.;  Aigner, Ludwig;  Galasko, Douglas R.;  Davis, Mark M.;  Wyss-Coray, Tony
收藏  |  浏览/下载:39/0  |  提交时间:2020/07/03

After activation by an agonist, G-protein-coupled receptors (GPCRs) recruit beta-arrestin, which desensitizes heterotrimeric G-protein signalling and promotes receptor endocytosis(1). Additionally, beta-arrestin directly regulates many cell signalling pathways that can induce cellular responses distinct from that of G proteins(2). In contrast to G proteins, for which there are many high-resolution structures in complex with GPCRs, the molecular mechanisms underlying the interaction of beta-arrestin with GPCRs are much less understood. Here we present a cryo-electron microscopy structure of beta-arrestin 1 (beta arr1) in complex with M2 muscarinic receptor (M2R) reconstituted in lipid nanodiscs. The M2R-beta arr1 complex displays a multimodal network of flexible interactions, including binding of the N domain of beta arr1 to phosphorylated receptor residues and insertion of the finger loop of beta arr1 into the M2R seven-transmembrane bundle, which adopts a conformation similar to that in the M2R-heterotrimeric G(o) protein complex(3). Moreover, the cryo-electron microscopy map reveals that the C-edge of beta arr1 engages the lipid bilayer. Through atomistic simulations and biophysical, biochemical and cellular assays, we show that the C-edge is critical for stable complex formation, beta arr1 recruitment, receptor internalization, and desensitization of G-protein activation. Taken together, these data suggest that the cooperative interactions of beta-arrestin with both the receptor and the phospholipid bilayer contribute to its functional versatility.


  
Convergence of Convective Updraft Ensembles With Respect to the Grid Spacing of Atmospheric Models 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019
作者:  Sueki, Kenta;  Yamaura, Tsuyoshi;  Yashiro, Hisashi;  Nishizawa, Seiya;  Yoshida, Ryuji;  Kajikawa, Yoshiyuki;  Tomita, Hirofumi
收藏  |  浏览/下载:23/0  |  提交时间:2020/02/17
numerical convergence  deep moist convection  high-resolution simulations  grid-refinement experiments  atmospheric models  terra incognita  
Extreme weather events over China: assessment of COSMO-CLM simulations and future scenarios 期刊论文
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2017, 37 (3)
作者:  Bucchignani, Edoardo;  Zollo, Alessandra Lucia;  Cattaneo, Luigi;  Montesarchio, Myriam;  Mercogliano, Paola
收藏  |  浏览/下载:10/0  |  提交时间:2019/04/09
extremes  high resolution simulations  China  climate change